Способ получения высокодисперсных железосодержащих порошков из техногенных отходов станций водоподготовки подземных вод

Авторы патента:


Способ получения высокодисперсных железосодержащих порошков из техногенных отходов станций водоподготовки подземных вод
Способ получения высокодисперсных железосодержащих порошков из техногенных отходов станций водоподготовки подземных вод
Способ получения высокодисперсных железосодержащих порошков из техногенных отходов станций водоподготовки подземных вод
Способ получения высокодисперсных железосодержащих порошков из техногенных отходов станций водоподготовки подземных вод
B22F2009/041 - Порошковая металлургия; производство изделий из металлических порошков; изготовление металлических порошков (способы или устройства для гранулирования материалов вообще B01J 2/00; производство керамических масс уплотнением или спеканием C04B, например C04B 35/64; получение металлов C22; восстановление или разложение металлических составов вообще C22B; получение сплавов порошковой металлургией C22C; электролитическое получение металлических порошков C25C 5/00)

Владельцы патента RU 2755216:

Общество с ограниченной ответственностью "ФЕРРМЕ ГРУПП" (RU)

Изобретение относится к химической промышленности, металлургии и охране окружающей среды и может быть использовано для производства сталей, сплавов, магнитных порошков и жидкостей, а также катализаторов. Техногенные отходы станций водоподготовки подземных вод, такие как осадки промывных вод станций обезжелезивания, диспергируют ультразвуковым воздействием, обеспечивающим эквивалентный диаметр частиц не более 100 мкм у не менее чем 90% от их общего числа. Затем обезвоживают до относительной влажности не более 90%. Обезвоженный осадок загружают или подают поточно в реакционную камеру или реактор для восстановления содержащихся в нём соединений железа при температуре 300-900°С, используя газовую среду, состоящую не менее чем на 95% из смеси монооксида и диоксида углерода. После этого проводят сепарацию целевого продукта - соединений железа, имеющих ферромагнитные свойства, от компонентов, полученных в результате восстановительной реакции. Полученные высокодисперсные железосодержащие порошки охлаждают до температуры 90°С и менее для снижения их химической активности. Изобретение позволяет расширить минерально-сырьевую базу производства высокодисперсных и нанодисперсных железосодержащих порошков с массовым содержанием соединений железа не менее 40%. 2 табл., 2 ил.

 

Изобретение относится к производству металлсодержащих высокодисперсных порошков и может быть использовано для изготовления порошков железа и его соединений из техногенных отходов станций водоподготовки подземных вод. Такие техногенные отходы известны также как осадки промывных вод фильтров станций обезжелезивания.

Изобретение применимо для производства железосодержащих порошков. Железосодержащие порошки широко используются в мире во многих различных сферах производственной и хозяйственной деятельности. Преимуществами данного материала являются широкая распространенность минерально-сырьевой базы для его производства, а также выраженные ферромагнитные свойства и возможность использования в качестве реагента для окислительно-восстановительных реакций.

Таким образом, данный материал можно использовать в том числе для производства сталей и сплавов в порошковой форме, магнитных порошков и жидкостей, катализаторов для нефтехимической промышленности и многих других.

Известен способ приготовления металлических наночастиц железа из водного золя на основе наночастиц ферригидрита [п.РФ №2642220 С1, МПК С21 В 15/00, опубл. 24.01.2018] (Способ приготовления металлических наночастиц железа). В описанном изобретении описывается обработка водного золя на основе наночастиц ферригидрита, полученных в результате культивирования бактерий Klebsiella oxytoca, выделенных из сапропеля озера Боровое Красноярского края. Данный факт делает его схожим с заявляемым в части использования сырья в составе золя на водной основе, но имеет множество существенных факторов, отличающих эти изобретения по существу. Главный из них - участие биологических процессов при получении наночастиц.

Известен способ получения сплавов железа из отходов производства [п.РФ №2192478 С1, МПК С21 В 15/00, опубл. 10.11.2002] (Способ получения сплава железа из отходов производства). В описанном изобретении описывается способ переработки железной окалины, во многом схожей по химическому составу с описываемым в изобретении техногенным сырьем и включающим в себя высокое содержание оксидов железа, в частности Fe2O3. Недостатком данного способа является применение термической обработки, не подразумевающей сохранение исходных гранулометрических свойств высокодисперсного сырья без сплавления.

Также общеизвестным аналогом материала, получаемого по разрабатываемой технологии, является порошок железный, выпускающийся в соответствии с ГОСТ 9849-86 «Порошок железный. Технические условия» (с Изменениями Ν 1, 2). Согласно ГОСТ, порошок железный восстановленный с классом крупности 71, аналогично заявляемому продукту имеет размер зерен не более 100 микрон, с содержанием фракции менее 45 микрон от 50 до 80%. Относительно материала, получаемого по заявляемой технологии, ГОСТ имеет больший фракционный диапазон, что не позволяет осуществлять точный контроль фракций менее 20 микрон. Помимо этого, ГОСТ подразумевает создание именно порошков чистого железа, имеющего незначительные примеси, что исключает в соответствии с ним возможность производства иных соединений железа, в то числе с композитным оксидным составом.

Наиболее близким аналогом, заявленного изобретения, является способ получения высокодисперсных порошков металлического железа из техногенных отходов станций водоподготовки подземных вод, описанный в статье Максимова Л.И., Миронова В.В., Совершенствование технологии получения высокодисперсных порошков металлического железа из осадка станции обезжелезивания (Вестник Томского государственного архитектурно-строительного университета, 2020, т. 22, N 2, с. с. 162-173, опубл. 30.04.2020)

Отличительными чертами представленного изобретения от всех известных существующих аналогов является использование техногенных отходов станций водоподготовки подземных вод в качестве исходного сырья для производства железосодержащих металлопорошков, а также отличные от аналогов по существу и своей последовательности этапы, позволяющие сохранять близкие к исходным гранулометрический и химический составы.

Задачей данного изобретения является создание технологии промышленного получения высокодисперсных и нанодисперсных железосодержащих порошков, отличающейся от существующих технологий большей энергоэффективностью и возможностью малоотходной утилизации техногенных отходов станций водоподготовки подземных вод, известных также как осадки промывных вод фильтров станций обезжелезивания.

Техническим результатом изобретения является получение технологии, посредством которой станет возможным создание высокодисперсных и нанодисперсных железосодержащих порошков из отходов станций водоподготовки подземных вод с массовым содержанием соединений железа не менее 40% от общей массы получаемого железосодержащего порошка в пересчете на сухое вещество, имеющих эквивалентный диаметр частиц не более 100 микрон у не менее чем 90% частиц от общего числа частиц.

Указанный технический результат достигается способом получения высокодисперсных железосодержащих порошков из техногенных отходов станций водоподготовки подземных вод, включающий диспергирование осадка промывных вод станций обезжелезивания ультразвуковым воздействием, обеспечивающим эквивалентный диаметр частиц не более 100 мкм у не менее чем 90% от общего числа частиц, последующее обезвоживание, загрузку или поточную подачу обезвоженного осадка в реакционную камеру или реактор для восстановления соединений железа, содержащихся в осадке, и сепарацию целевого продукта - соединений железа, имеющих ферромагнитные свойства, от компонентов, полученных в результате восстановительной реакции, при этом, обезвоживание осадка ведут до относительной влажности не более 90%, восстановление соединений железа проводят при температуре 300-900°С и при этом используют газовую среду, состоящую не менее чем на 95% из смеси монооксида и диоксида углерода, а после сепарации полученные высокодисперсные железосодержащие порошки охлаждают до температуры 90°С и менее для снижения их химической активности.

(1) Исходный химический состав техногенных отходов станций водоподготовки подземных вод в большинстве случаев имеет от 20% до 90% железосодержащих соединений, что обусловлено высоким содержанием соединений железа в исходной подземной воде и зависит от геологических и гидрологических характеристик водоносного пласта.

(2) Исходный гранулометрический состав техногенных отходов станций водоподготовки подземных вод, выраженный в основном частицами с эквивалентным диаметром от 500 микрон до 100 нанометров, обусловлен одним из ключевых технологических процессов обезжелезивания подземных вод аэрацией. В аэрационном устройстве происходит насыщение воды кислородом воздуха, окисление растворимых соединений железа и переход их в нерастворимую форму. Данный процесс является широко распространенным среди общего числа станций водоподготовки подземных вод, что позволяет нам говорить о достаточной схожести и воспроизводимости технического результата на различных объектах водоподготовки подземных вод.

В качестве частного примера исходного гранулометрического состава подобных техногенных отходов, результат которого может быть экстраполирован на техногенные отходы других станций водоподготовки подземных вод, приведены результаты исследования техногенных отходов Велижанской станции водоподготовки подземных вод, расположенной в Тюменской области. Подробные данные об этом представлены на Фиг. 1 и 2.

(3) Согласно разработанной технологии, процесс химического восстановления происходит в газовой среде, состоящей не мнее чем на 95% из смеси монооксида и диоксида углерода. Этот процесс протекает при температурах, обеспечивающих протекание окислительно-восстановительных реакций, но препятствующих значительной потере исходных гранулометрических свойств исходного техногенного сырья.

На фиг 1 изображены графики гранулометрического состава осадка промывных вод, полученного методом:

(А) Сухого отбора с элементов технологических аппаратов и конструкций, задействованных в процессе водоподготовки подземных вод.

(Б) Сепарации из промывных вод.

На фиг 2 изображены графики гранулометрического состава железосодержащих порошков, полученных из осадка промывных вод методом: (А) Сухого отбора с элементов технологических аппаратов и конструкций, задействованных в процессе водоподготовки подземных вод.

(Б) Сепарации из промывных вод.

Результаты гранулометрического анализа в виде набора фракций твердой фазы техногенных отходов станций водоподготовки подземных вод, полученных в результате процесса аэрации, представлены в Таблице 1.

где, d10, d50 и d90 эквивалентный диаметр частиц в микронах, лежащих на верхней границе 10%, 50% и 90% соответственно относительно наименьших частиц от общего числа частиц.

Также допускается наличие фракции частиц с эквивалентный диаметр частиц не более 100 мкм у не менее чем 90% от общего числа частиц.

Также заявленный гранулометрический состав металлопорошка дополняется квазисферической формой исходных частиц техногенного отхода станций водоподготовки подземных вод, что позволяет затрачивать меньшее количество энергии и технологических операций для приведения частиц к сферической форме, требуемой для создания некоторых типов конечной продукции на основе металлопорошков.

Химический состав техногенных отходов станций водоподготовки подземных вод должен соответствовать компонентному составу, где компоненты находятся в диапазонах, указанных в Таблице 2.

Для наибольшей степени очистки железосодержащих порошков, имеющих ферромагнитные свойства, от примесей рациональным является применять комбинацию из различных методов сепарации, в том числе магнитного, флотационного, гравитационного.

Изобретение относится к технологическому процессу получения железосодержащих порошков из техногенных отходов станций водоподготовки подземных вод, имеющему следующие стадии:

1. Получение техногенных отходов станций водоподготовки подземных вод методом сепарации из промывных вод или методом сухого отбора с элементов технологических аппаратов и конструкций, задействованных в процессе водоподготовки подземных вод;

2 Диспергирование техногенных отходов станций водоподготовки подземных вод ультразвуковым или иным воздействием, обеспечивающим эквивалентный диаметр частиц не более 100 микрон у не менее чем 90% частиц от общего числа частиц;

3. Обезвоживание техногенных отходов станций водоподготовки подземных вод до относительной влажности не более 90%;

4. Загрузка или поточная подача техногенных отходов станций водоподготовки подземных вод в реакционную камеру или реактор;

5. Восстановление соединений железа, содержащихся в техногенном отходе станции водоподготовки подземных вод в реакционной камере или реакторе в газовой среде, имеющей восстановительный потенциал и состоящий не менее чем на 95% из смеси монооксида и диоксида углерода и при температурах от 300 до 900 градусов Цельсия. Это обеспечит протекание реакции восстановления до других форм оксидов и иных соединений железа, но будет препятствовать сплавлению частиц и образованию расплава жидкого железа;

6. Сепарация частиц целевого продукта соединений железа, имеющих ферромагнитные свойства, от иных компонентов сырьевой смеси, полученной в результате восстановительной реакции. Данный этап необходим для повышения уровня химической чистоты относительно исходного сырья;

Охлаждение до 90 и менее градусов Цельсия для снижения химической активности получаемых железосодержащих порошков с целью предотвращения преждевременного окисления при контакте с окисляющими веществами, в том числе с кислородом воздуха.

Способ получения высокодисперсных железосодержащих порошков из техногенных отходов станций водоподготовки подземных вод, включающий диспергирование осадка промывных вод станций обезжелезивания ультразвуковым воздействием, обеспечивающим эквивалентный диаметр частиц не более 100 мкм у не менее чем 90% от общего числа частиц, последующее обезвоживание, загрузку или поточную подачу обезвоженного осадка в реакционную камеру или реактор для восстановления соединений железа, содержащихся в осадке, и сепарацию целевого продукта - соединений железа, имеющих ферромагнитные свойства, от компонентов, полученных в результате восстановительной реакции, отличающийся тем, что обезвоживание осадка ведут до относительной влажности не более 90%, восстановление соединений железа проводят при температуре 300-900°С и при этом используют газовую среду, состоящую не менее чем на 95% из смеси монооксида и диоксида углерода, а после сепарации полученные высокодисперсные железосодержащие порошки охлаждают до температуры 90°С и менее для снижения их химической активности.



 

Похожие патенты:
Изобретение может быть использовано при получении сорбентов. Способ получения гётита включает обработку кристаллогидрата хлорида железа (III) при атмосферном давлении сверхвысокочастотными волнами мощностью 300 Вт в течение 3-4 мин.

Изобретение относится к технологии получения нанопорошков феррита (ортоферрита) висмута в струйных микрореакторах. Способ получения нанопорошков феррита висмута заключается в подаче исходных компонентов - смеси растворов солей висмута и железа в соотношении компонентов, отвечающих стехиометрии BiFeO3, и раствора щелочи с молярной объемной концентрацией от 1 до 4 моль/л, отвечающей условиям соосаждения компонентов в струйный микрореактор 1, при этом получение нанопорошков феррита висмута ведут в две стадии: на первой стадии в струйном микрореакторе 1 осуществляют соосаждение гидроксидов висмута и железа путем подачи растворов исходных компонентов в виде тонких струй диаметром от 100 до 800 мкм, сталкивающихся в вертикальной плоскости, при температуре в диапазоне от 20 до 30°С и давлении, близком к атмосферному, с последующим отделением частиц от cуспензии и их промывки от остатков щелочи, на второй стадии проводят дегидратацию соосажденных гидроксидов висмута и железа при температуре в интервале от 420 до 600°С и атмосферном давлении, скорость струй задают в интервале от 10 до 25 м/с, а угол между струями устанавливают от 70 до 120°, при этом отделение продуктов реакции и их промывку после первой стадии осуществляют при помощи вакуум-фильтра 3 барабанного типа, имеющего зоны всасывания суспензии, многократной промывки слоя осадка при помощи форсунок 4, просушки атмосферным либо подогретым воздухом, отделения слоя осадка при помощи ножа, а для осуществления второй стадии используют барабанную печь 5, установленную под небольшим наклоном к горизонту, вращающуюся на кольцевых бандажах, опирающихся на ролики 6, оснащенную одним или несколькими инфракрасными нагревателями 7, и сборник готового продукта 8.

Изобретение относится к технологии получения частиц ферритов, которые могут быть использованы в вакуумной, космической технике, электронике, фотонике, катализе, медицине, магнитно-резонансной томографии, терапии, онкологии. Способ получения частиц ферритов шпинельного типа, имеющих в основном изотропную форму и содержащих железо и один двухвалентный металл, отличный от железа, в соотношении по крайней мере два атома железа к одному атому двухвалентного металла, в котором двухвалентный металл выбран из группы, включающей марганец и кобальт, заключается в том, что водный раствор, содержащий ионы двухвалентного железа и ионы двухвалентного металла в соотношении два иона двухвалентного железа к одному иону двухвалентного металла, смешивают с гидроксидом натрия, подвергают воздействию окислителя и проводят ферритизацию смеси при нагревании в водной среде, а затем отделяют частицы феррита шпинельного типа от раствора, при этом в группу, из которой выбран двухвалентный металл, добавлена медь; в качестве окислителя берут сульфат или хлорид гидроксиламина в стехиометрическом количестве, а гидроксид натрия добавляют дважды: на стадии окисления в стехиометрическом количестве по отношению к двухвалентному железу в раствор солей с окислителем при комнатной температуре в слабокислой среде с рН=6; на стадии ферритизации в количестве, достаточном для создания в растворе щелочной среды с рН=14, а ферритизацию проводят при температуре 100°С в течение 10 минут.

Изобретение относится к загрузке пористых частиц микронного или субмикронного размера неорганическими наночастицами или органическими молекулами. Описан способ загрузки неорганических наночастиц или органических молекул в пористые частицы микронного или субмикронного размера, включающий получение суспензии неорганических наночастиц или органических молекул и пористых частиц в водной среде или в среде органического растворителя; контролируемое замораживание суспензии со скоростью фронта кристаллизации меньшей критической скорости, при которой частицы захватываются фронтом, причем замораживание осуществляют при перемешивании со скоростью, при которой не происходит седиментация частиц; оттаивание суспензии; и выделение загруженных пористых частиц, а также способ получения полимерных капсул микронного или субмикронного размера, включающий получение загруженных пористых частиц микронного или субмикронного размера, формирование полимерной оболочки на поверхности указанных загруженных пористых частиц микронного или субмикронного размера, растворение пористых частиц микронного или субмикронного размера путем обработки реагентом, растворяющим пористые частицы, а также полимерная капсула, содержащая неорганические наночастицы и/или органические молекулы.

Изобретение относится к кристаллическому оксигидроксид-молибдату переходного металла, катализатору гидрообработки, способу получения кристаллического оксигидроксида-молибдата переходного металла, способу получения катализатора гидрообработки и к способу гидрообработки. Кристаллический оксигидроксид-молибдат переходного металла имеет формулу: (NH4)aM(OH)bMoxOy, где «а» находится в диапазоне от 0,1 до 10; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co, Ni, Cu, Zn и их смесей; «b» находится в диапазоне от 0,1 до 2; «x» находится в диапазоне от 0,5 до 1,5; и «y» представляет собой число, которое соответствует сумме валентностей а, M, b и x; при этом кристаллический оксигидроксид-молибдат переходного металла имеет порошковую рентгеновскую дифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A.

Изобретение относится к технологии получения сложных оксидов, которые обладают свойствами материалов-мультиферроиков, проявляют магнитоэлектрический эффект, магнитокалорический эффект и могут быть применены в области многофункциональных устройств в информационных и энергосберегающих технологиях. Способ получения сложного оксида лютеция и железа LuFe2O4±δ включает приготовление смеси из оксидов железа (III) и лютеция (III) и обжиг полученной смеси в газовой среде, при этом исходные оксиды смешивают в отличном от стехиометрического соотношении Fe2O3:Lu2O3, составляющем 1,00:0,39, гомогенизируют растиранием в течение не менее 60 мин, а обжиг приготовленной смеси ведут при температуре 1090°С в газовой среде, восстановительные условия которой обеспечиваются использованием газовой смеси, состоящей из аргона и кислорода, при поддержании заданного значения давления кислорода в диапазоне Po2=10-11,24÷10-12,04 атм.

Изобретение относится к области гидрометаллургии цветных металлов и может быть использовано при переработке концентратов, промпродуктов и твердых отходов, содержащих металлы. Способ включает контактирование экстрагента и раствора, перемешивание смеси, отстаивание и разделение фаз.

Изобретение относится к железным и железооксидным микроразмерным трубкам и способу их получения. Полученные микроразмерные трубки могут быть использованы как наполнители для полимерных и керамических матриц, микрореакторы, системы транспорта, электропроводящие и магнитные элементы, сорбенты токсичных ионов металлов, мембраны и фильтры.

Изобретение может быть использовано для окрашивания пластмасс, в производстве цветных бетонов, плитки, керамики, фаянсовых и фарфоровых изделий. Способ получения железооксидных пигментов включает получение осадка гидроксида железа (II) защелачиванием аммиаком до рН 9,0-9,2 раствора, содержащего ионы сульфата железа (II).

Изобретение может быть использовано при получении пигментов для окрашивания пластмасс, бетонов, керамической плитки, фаянсовых, фарфоровых изделий. Для получения железооксидных пигментов пиритный огарок подвергают окатыванию с концентрированной серной кислотой.

Изобретение относится к средам на основе железа (ZVI), предназначенным для удаления одного или множества загрязнителей из почвы, воды или сточных вод. Фильтровальная среда для уменьшения содержания загрязнителей в текучих средах включает промытый в HCl порошок на основе железа, при этом удельная площадь поверхности по ВЕТ промытого кислотой порошка на основе железа составляет 1,2-10 м2/г, промытый кислотой порошок характеризуется содержанием Fe, по меньшей мере, 90 мас.%, характеризуется величиной pH-специфического окислительно-восстановительного потенциала (PSE) менее -0,03 в равновесных условиях (спустя 48 ч), причем PSE определяется как результат деления окислительно-восстановительного потенциала (Eh) на рН, Eh/pH, измеренных в общем объеме, состоящем из 50 мл бескислородной воды и 1 г упомянутого порошка на основе железа, при этом средний размер частиц D50 промытого кислотой порошка на основе железа составляет от 20 до 10000 мкм.
Наверх