Метод диагностики вирусов и вирусных инфекций

Изобретение относится к биотехнологии. Предложен способ диагностики вирусов и вирусных инфекций in vitro и in vivo. Способ включает применение ускорительной масс-спектрометрии, при этом количественный подсчет вируса проводят по количеству радиоуглеродной метки на оболочке вирусов, где метку вносят без разрушения вирионов. Пробы для УМС-анализа готовят из меченой вируссодержащей жидкости с известной массовой концентрацией путем добавления вируссодержащей жидкости к углероду, не содержащему радиоактивный 14С, зауглероживания полученной смеси и определения содержания метки в одной вирусной частице. Изобретение обеспечивает подсчет сверхнизкого количества вирионов в вируссодержащей жидкости и определение числа проникших вирусных частиц в любые ткани, инфицированных мечеными вирусами. 4 ил., 3 табл., 3 пр.

 

Изобретение относится к медицинской биотехнологии, а именно к методам определения вирусных инфекций в вирусологии для выявления и количественного определения вирусов. Кроме того, изобретение относится к способам и наборам для получения, внесения метки и применения радиодиагностических реагентов и пептидов для количественного анализа.

Методика внесения радиоактивных меток ранее применялась для пептидов при диагностике различных онкологий (аденокарциномы человека, рака груди, нейробластом, рака желудка, меланомы, опухолевых клеточных линий) (RU 2171117 С2, A61K 51/08, 2001), позволяя определять опухолевые клетки in vivo путем радиоотображения. Известны следующие радионуклиды, пригодные для радиоотображения: 14С, 32Р, 67Ga, 99mTc, 111In, 123I, 125I, 169Yb, 186Re, 188Re.

В радиосцинтиграфии используется метод радиойодирования, а для более качественного отображения достаточно широко применяют технеций (RU 2122431, A61K 47/48, 1998; US N5225180, A61K 51/08, 1993). Так, радиоактивный метод с применением 125I использовали в генной инженерии при определении антител класса IgM к корантигену вируса гепатита В (SU 1642399, G01N 33/53, 1991). Однако методы получения радиойодированных пептидов в промышленных масштабах имеют свои недостатки, среди которых дороговизна и ограниченность запасов.

Хотя 99mTc является предпочтительным радионуклидом для сцинтиграфического радиоотображения по сравнению с радиойодированием, тем не менее данный метод не использовался широко, поскольку не подходит для мечения белков, имеющих размер молекулы менее, чем 10 тыс. дальтонов (Lamberts SW, Bakker WH, Reubi JC, et al. Receptors on tumors studied with radionuclide scintigraphy. J Nucl Med. 1991; 32: 1189-1191). Из недостатков также можно отметить, что ни одно из приведенных описаний не раскрывает информации, как именно были получены меченные технецием белки - раскрывается только информация о «вазоактивном кишечном пептиде, ковалентно связанном с хелатирующей составляющей технеция или рения» (186Re, 188Re).

Радиоактивный фосфор (32Р) предлагается к выявлению фрагментов генома вируса инфекционного некроза поджелудочной железы. Недостатком данного способа авторы отмечают возможность ложноположительных результатов и высокую специфичность, нарастающую в случае измененного генотипа (RU 2508547, G01N 33/50, 2013).

Недостатком вышеописанных способов регистрации биологических объектов с помощью метки является необходимость использования опасных для здоровья человека доз радионуклидов для достоверной регистрации меченых соединений методом радиоотображения или сцинтиллятором. Более того, данные радионуклиды, введенные в живые организмы, нельзя рассматривать как нейтральные для организмов ввиду высокой радиоактивности.

В связи с этим авторами предлагается использование сверхчувствительного метода регистрации радионуклидов, в частности радиоуглерода, - ускорительной масс-спектрометрии, имеющей непревзойденную чувствительность: регистрируется один атом 14С среди 1015 атомов 12С. Способ регистрации изотопа методом УМС - поштучный подсчет ядер 14С - позволяет уменьшить вносимую дозу радиоактивного препарата до нейтральной для биологического объекта и не оказывать существенного воздействия на его жизнедеятельность.

Радиоуглерод (14С) описан в использовании для определения заражения желудочно-кишечного тракта Helicobacter pylori. Пациенту дают выпить препарат мочевины “Уреакапс, 14С", содержащий радиоактивный нуклид 14С. У инфицированных Helicobacter pylori под воздействием бактериального фермента уреазы происходит превращение мочевины в аммиак с высвобождением радиоактивномеченого углекислого газа, впоследствии регистрируемом в выдохе пациента (Balon H.R., Roff Е., Freitas J.E., Gates V., Dworkin H.J. Society of Nuclear Medicine Procedure Guideline for C-14 Urea Breath Test. J Nucl Med. 1998 Nov; 39(11): 2012-2014). Данный метод прост в применении и тестировании пациентов, но в последнее время редко применим в виду радиофобии и заменен на тест со 13С, который не связан с радиационными рисками. Однако в данном случае радиоуглеродная метка не вносится в микроорганизм, а находится в веществе, которое входит в цикл его жизнедеятельности, то есть данный метод не является прямым способом определения концентрации бактерий в желудке.

Обогащение изотопом 14С вируссодержащей жидкости (ВСЖ), предложенное нами, применяется впервые. Как и другие методы использования радиоактивной метки применение 14С требует соблюдения специальных мер безопасности и лицензирования лаборатории. Однако сильной стороной данного метода диагностики является возможность проведения подсчета сверхнизкого количества вирионов в ВСЖ, а также определение числа проникших вирусных частиц в любые ткани, инфицированных мечеными вирусами. Благодаря данному методу становится возможным углубленное изучение вирус-клеточного взаимодействия in vitro и in vivo, что особенно важно при низких концентрациях вирусов, а также исследование механизма развития высоколетальной инфекции. Разработка нового метода диагностики с использованием ускорительной масс-спектрометрии проведена на примере вирус-клеточного взаимодействия вируса гриппа А с введенной меткой радиоуглерода 14С.

Предлагается метод диагностики вирусных инфекций с применением ускорительной масс-спектрометрии, при котором количественный подсчет вируса проводится по количеству радиоуглеродной метки на оболочке вирусов, причем метка вносится без разрушения вирионов.

В качестве модельной системы использовали вирус гриппа А. Меченые вирусные частицы титровали в клетках собачьей почки Madin-Darby (MDCK) и проводили реакцию гемагглютинации (РГА). Результаты показали, что титр вируса до и после внесения метки 14С остался неизменным. Просвечивающая электронная микроскопия (ПЭМ) выявила структурную целостность мембран вирионов. Таким образом, данный метод может быть применен в медицинской биотехнологии, а именно как метод определения вирусных инфекций в вирусологии, например, для выявления и идентификации вируса гриппа А, определения специфичности онколитических вирусов и др. Изучение вирус-клеточного взаимодействия на примере обогащенного изотопом 14С вируса гриппа позволяет определить сверхнизкие количества проникших вирусных частиц, способных вызвать заболевание в органах экспериментально инфицированных млекопитающих. Кроме того, данный метод применим при анализе других вирусов и пептидов, содержащих на своей поверхности белки с СООН-группами в исследованиях in vitro и in vivo.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Для внесения радиоактивной метки на поверхность вируса гриппа необходима активация карбоксильной группы белка, для чего был использован водорастворимый кросс-линкер - карбодиимид (англ. 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, EDC, EDAC или EDCI).

Связывание аминогруппы меченной 14С мочевины с карбоксильными группами белков на поверхности вируса гриппа в водной среде проводили по механизму, представленному на Фиг. 1.

Связывание углерода карбоксильной группы, расположенной на поверхностном белке вируса гриппа, с азотом первичного амина (на примере мочевины, меченной 14С, радиоуглерод обозначен как С*) протекает через активацию карбоксильной группы белка кросс-линкером EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide). Результатом реакции белковых групп и мочевины в присутствии EDC является амидная связь между белком и мочевиной и образование побочного продукта из EDC в виде изомочевины.

До внесения 14С предварительно было определено количество присутствующих на поверхности вируса гриппа A (H1N1)pdm09 (штамм A/Tomsk/273MA3/2010(H1N1pdm09) (Пат. РФ 2605317) (MA-CD1) карбоксильных групп и рассчитана концентрация вирусных частиц в пробе. Расчет количества карбоксильных групп, содержащихся на всех вирусных частицах в объеме 1 мл штамма MA-CD1 выполнили на основании общепринятых данных из литературы (Фридман Э.А., Коликов В.М. Некоторые биологические и физико-химические принципы получения убитых гриппозных вакцин // В кн.: Убитая гриппозная вакцина. Л., 1976 г. Т. 47. С. 49-53) и вычисления значения гемагглютинирующей единицы (ГАЕ):

1) на поверхности одного гемагглютинина вируса гриппа А субтипа H1 может быть расположено до 103 аминокислотных остатков, содержащих карбоксильные группы, в антигенных сайтах (наиболее вариабельные эпитопы, взаимодействующие с антителами);

2) на поверхности одной нейраминидазы вируса гриппа А субтипа H1 имеется до 25 эпитопов;

3) на вирионах сферической структуры располагается примерно 500 шипов НА и 100 шипов NA;

4) 1000 ГАЕ/мл обеспечивается (2-4) × 1010 шт/мл вирусных частиц;

5) для штамма MA-CD1 это значение составило 640 ГАЕ/мл, значит, физический титр вируса гриппа равен

и дает значение в диапазоне (128-256)×108 шт/мл.

6) Из расчета 128×108 шт/мл активных вирусных частиц определено число карбоксильных групп по нижней границе:

128×108 шт/мл × (500 гемагглютининов на поверхности 1 шт вирусной частицы × 103 аминокислоты на поверхности 1 шт НА + 100 нейраминидаз на поверхности 1 шт вирусной частицы × 25 аминокислот на поверхности 1 шт NA) = 6912×1011 ед.

7) И из расчета 256×108 шт/мл активных вирусных частиц определено число карбоксильных групп по верхней границе:

256×108 шт/мл × (500 гемагглютининов на поверхности 1 шт вирусной частицы × 103 аминокислоты на поверхности 1 шт НА + 100 нейраминидаз на поверхности 1 шт вирусной частицы × 25 аминокислот на поверхности 1 шт NA)=13824×1011 ед.

Таким образом, определен диапазон концентрации карбоксильных групп на эпитопах вирусных частиц: от 6912×1011 ед. до 13824×1011 ед. в 1 мл ВСЖ при 640 ГАЕ/мл.

Для проведения работ по определению концентрации вируса в ВСЖ был наработан вирусный пул. Для этого использовали вируссодержащий биологический материал штамма MA-CD1. Готовили его десятикратные разведения (1-10) на стерильном физиологическом растворе. Затем каждое разведение оценивали по продукции гемагглютинина в реакции гемагглютинации (РГА) и 50% инфекционному титру на MDCK. Отобранный образец с наибольшими показателями использовали для наработки пулов на 3-х культуральных флаконах по 30 мл объема каждый. Общий пул получали путем объединения ВСЖ из трех культуральных флаконов, зараженных одинаковым разведением вируса. Вируссодержащий раствор хранили при -70°C.

Перед нанесением радиоактивной метки на вирионы требовалось очищение ВСЖ от остатков культуры клеток MDCK и других биомолекул, которые могут содержать карбоксильные группы. Для этого мы использовали простой и быстрый вариант очистки, разработанный для бактериофагов. Супернатант ВСЖ последовательно 3 раза подвергли стерилизующей фильтрации через мембранные фильтры Millipor с диаметром пор 0,22 мкм. Полистирольные тубусы объемом на 15 мл (Greiner Bio-One International, Австралия) заполняли суспензией (14 мл на пробирку) и центрифугировали при 38000 g при 4°C в течение 1 ч на ультрацентрифуге Beckman Scientific Inc TL-100 Benchtop. Для удаления побочных белков всю надосадочную жидкость сливали и добавляли к осажденному вирусу 14 мл фосфатно-солевого буфера (ФСБ, рН 7,4). Затем энергично перемешивали и снова центрифугировали с той же скоростью и продолжительностью, что и выше. Данная процедура была повторена два раза. После второй стадии центрифугирования надосадочную жидкость сливали и добавляли к осажденному вирусу 2 мл ФСБ (рН 7,4), суспендировали и фасовали по 1 мл на пробирку, замораживали на -70°C для хранения. Этот метод обеспечивает высококачественную очистку вируса гриппа, но приводит к снижению его титра (с 640 ГАЕ/мл до 320 ГАЕ/мл в нашем образце), поскольку некоторые вирионы могут остаться на поверхности мембранных фильтров Millipor. Таким образом, после процедуры ультрацентрифугирования количество вирионов в ВСЖ составило 320 ГАЕ/мл, что соответствует (64-128) × 108 шт/мл вирионов, содержащих 1014 - 1015 шт - СООН групп на эпитопах.

Затем к 1 мл ВСЖ добавили 0,5 мг/мл EDC и выдержали при комнатной температуре в течение 1 ч. После в раствор добавили препарат «Уреакапс 14С», содержащий меченую мочевину с радиоактивностью 37 кБк и вспомогательное вещество натрия пирофосфат, и инкубировали при 4°C в течение 16 ч. Затем применяли двойное ультрацентрифугирование (60 мин, 38000 g, 4°C), раствор слили, к осадку добавили 1 мл ФСБ и получили ВСЖ*.

Для анализа содержания радиоуглерода в вирусах методом ускорительной масс-спектрометрии (УМС) приготовили пробы следующим образом: 10 мкл раствора ВСЖ*, предварительно разбавленного в 100 раз (10 мкл ВСЖ* + 990 мкл ФСБ), прикапали к навескам мелкозернистого плотного графита (МПГ), не содержащего радиоактивного 14С (Таблица 1). Затем пробы подвергли процедуре зауглероживания, которую проводили на абсорбционно-каталитической установке, включающей стадии сжигания, сорбции углекислого газа на селективном сорбенте, десорбции и каталитического восстановления CO2 водородом (РФ 2638820, G01N 33/60, 2017). После завершения процесса зауглероживания порошок, содержащий 1 мг углерода, прессовали в таблетки и направляли на УМС-анализ. Процедуре графитизации, помимо исследовательских образцов, подвергали также стандартные образцы: щавелевой кислоты (OxI) и сахарозы (ANU). Относительное содержание радиоуглерода 14С/13С в исследовательских образцах нормировали на содержание 14С/13С в стандартах, получая отношения 14С обр./14С фон. Определение содержания радиоуглерода проводили на Уникальной научной установке «Ускорительный масс-спектрометр ИЯФ СО РАН» (УНУ «УМС ИЯФ СО РАН»).

УМС-анализ показал, что в 10 мкл ВСЖ* 1,6*1010 NC*ONH2-групп, значит, в 1 мл ВСЖ* количество меченых NC*ONH2-групп составляет 1,6*1012 шт.

Если в 1 мл содержится (1,28-2,56)*1010 штук вирусов и (6,9-14)*1014 штук карбоксильных групп, то метка вносится на (0,1-0,3)% групп.

На Фиг. 2 представлен снимок просвечивающей электронной микроскопии вирус содержащей жидкости, меченной радиоуглеродом.

Пример 2.

Все работы с животными одобрены Комитетом по биомедицинской этике при ФИЦ ФТМ.

Мышей линии BALB/c 6-8-недельных (масса тела 18-20 г) (питомник ФБУН ГНЦ ВБ «Вектор») анестезировали диэтиловым эфиром (2-4% во вдыхаемой смеси) и инфицировали интраназально 104 TCID50 (50% tissue culture infective dose) вируса MA-CD1, меченным 14C, в 50 мкл ФСБ.

Ежедневно в течение 8 суток проводили наблюдение за инфицированными мышами, оценивали поведение (активность, наличие аппетита), внешний вид животного, качество шерстного покрова, упитанность, наличие специфических клинических проявлений болезни (конъюнктивиты, выраженная дыхательная недостаточность, нервные проявления (парезы, параличи).

При отсутствии летальности среди экспериментально инфицированных лабораторных мышей определяли патологическое влияние вируса гриппа MA-CD1, меченного 14С, на организм экспериментальных животных по изменению массы и температуре тела животных опытных групп. Для этого получали данные о массе тела каждого животного ежедневно в течение всего срока наблюдения. Показатель изменения массы тела вычисляли как среднее арифметическое массы тела всех мышей в группе. Измерение температуры тела производили в ушном канале при помощи инфракрасного электронного термометра «DIGITAL VETERINARY THERMOMETER AccuVet.» (Mesure technology Co., LTD.) и выражали в градусах Цельсия (°C).

На 1-е, 2-е и 3-й сутки после инфицирования по три мыши умерщвляли путем декапитации. Для вирусологического и УМС анализов брали легкие, трахею, сердце, печень, головной мозг, почку, тонкую кишку, толстую кишку. Инфекционные титры вируса гриппа определяли титрованием 10%-го гомогената в культуре клеток MDCK, а также с помощью определения гемагглютинирующей единицы (ГАЕ) в 1 мл ВСЖ в реакции гемагглютинации (РГА) (Manual for the laboratory diagnosis and virological surveillance of influenza. WHO Global Influenza Surveillance Network, 2011. 153p). Для УМС-анализа образцы биологических тканей сушили и подвергали зауглероживанию по Примеру 1.

ВСЖ*, меченную 14С, также анализировали с помощью просвечивающей электронной микроскопии.

В результате инфицирования мышей линии BALB/c вирусом гриппа A/H1N1pdm09, меченным 14С, отмечались признаки гриппозного заболевания в виде снижения массы тела и гипотермии (Фиг. 3, 4).

Результаты определения инфекционного титра вируса, гемагглютинирующей активности, а также физического титра методом УМС, в органах лабораторных мышей представлены в Таблице 2.

Методом УМС меченые вирусы обнаруживаются во всех исследованных органах, наибольшая концентрация наблюдается в легких и трахее. Стоит отметить, что во всех органах, за исключением легких, наблюдается увеличение концентрации меченых вирусов на вторые сутки после инфицирования, после чего концентрация падает.

Физический титр с помощью просвечивающей электронной микроскопии измерить не удалось, т.к. количество вирусных частиц было ниже детектируемого уровня, что, в свою очередь, подчеркивает высокую точность анализа с помощью УМС.

Пример 3.

Внесение радиоуглерода на оболочку вируса гриппа A/H1N1pdm09 проводили по Примеру 1. После чего провели определение титра вируса по Примеру 1 (1,5⋅1012 шт/мл) и определили концентрацию радиоуглерода в ВСЖ*. Из результатов УМС-анализа следует, что в 10 мкл ВСЖ* находится 1,5*1010 NC*ONH2-групп, что соответствует содержанию радиоуглеродной метки в (0,2-0,4)% карбоксильных групп, или 100-200 меченых карбоксильных групп на один вирион. Затем провели аэрозольные эксперименты по осаждению вируса из ВСЖ* на фрагмент полиэтиленовой пленки площадью 1 см2. Для этого тестируемый образец был помещен в герметичную камеру, в которую поступал аэрозоль, идущий затем на счетчик частиц. Аэрозоль генерировали пропусканием потока очищенного воздуха со скоростью 28.3 л/мин через форсунку, содержащую раствор меченого вируса. Приблизительно 10 мл меченого вируса гриппа А было распылено с помощью пневматического распылителя в течение 60 мин. Определялся средний размер частиц аэрозоля и концентрация аэрозоля в потоке, идущем через камеру с образцами. С помощью счетчика частиц было определено, что средний размер изучаемых частиц аэрозоля составил 180 нм в связи с наличием в буферном растворе солей, а концентрация аэрозоля в потоке, идущем через камеру с образцами - около 105 см-3. Через 50 дней после аэрозольных испытаний и хранения в закрытом флаконе на воздухе при комнатной температуре фрагмент полиэтилена был отправлен на зауглероживание с последующим определением содержания радиоуглерода методом ускорительной масс-спектрометрии (УМС). Зауглероживание образцов осуществляли на абсорбционно-каталитической установке по Примеру 1.

Для оценки содержания 14С на пленке полиэтилена на УМС был отправлен фрагмент пленки, не подвергшийся аэрозольной экспозиции, а также фрагмент пленки после 60-минутных аэрозольных испытаний в камере (Таблица 3).

Таким образом, по данным УМС-анализа на образце полиэтилена площадью 1 см2 через 50 дней находилось 7⋅106 меченых NC*ONH2-групп, что соответствует около 35-70 тысячам вирионов.

Фиг. 1. Схема связывания углерода карбоксильной группы, расположенной на поверхностном белке вируса гриппа, с азотом первичного амина (на примере мочевины, меченной 14С, радиоуглерод обозначен как С*) через активацию карбоксильной группы белка кросс-линкером EDC.

Фиг. 2. Снимок ПЭМ вируса гриппа A (H1N1)pdm09 (штамм A/Tomsk/273MA3/2010(H1N1pdm09), меченного радиоуглеродом.

Фиг. 3. Снижение массы тела у экспериментальных животных, инфицированных вирусом гриппа A/H1N1pdm09, меченным 14С.

Фиг. 4. Изменение температуры тела у экспериментальных животных, после инфицирования вирусом гриппа A/H1N1pdm09, меченным 14С.

Способ диагностики вирусов и вирусных инфекций in vitro и in vivo, включающий применение ускорительной масс-спектрометрии (УМС), где количественный подсчет вируса проводят по количеству радиоуглеродной метки на оболочке вирусов, а метку вносят без разрушения вирионов, отличающийся тем, что пробы для УМС-анализа готовят из меченой вируссодержащей жидкости с известной массовой концентрацией путем добавления вируссодержащей жидкости к углероду, не содержащему радиоактивный 14С, с последующей процедурой зауглероживания полученной смеси, далее определяют содержание метки в одной вирусной частице.



 

Похожие патенты:

Группа изобретений относится к области химии, а именно к способу неразрушающей идентификации половой характеристики эмбриона Gallus gallus domesticus in ovo и к способу селективной инкубации птенцов видов яйцекладущих со специфической половой характеристикой. Способ неразрушающей идентификации половой характеристики эмбриона Gallus gallus domesticus in ovo включает: получение образца материала, ассоциированного с яйцом, содержащим эмбрион, - аллантоисной жидкости эмбриона, измерение значения оценки на наличие и концентрацию по меньшей мере первого биомаркера - 3-[(2-аминоэтил)сульфанил]бутановой кислоты в образце, указывающего на половую характеристику эмбриона, применение порога к значению оценки и концентрации для идентификации половой характеристики для эмбриона, причем концентрация первого биомаркера, составляющая 50 нг/мл или больше в аллантоисной жидкости эмбриона в дни 7, 8 или 9, коррелирует с эмбрионом женского пола, тогда как наличие первого биомаркера, присутствующего при менее чем 50 нг/мл, коррелирует с эмбрионом мужского пола.

Изобретение относится к медицине и касается способа дифференциальной диагностики стеатоза печени и неалкогольного стеатогепатита у мужчин. Сущность способа заключается в том, что определяют соотношение концентрации 3-гидроксимасляной и 3-метил-2-оксовалериановой кислот, определенных хроматографическим методом в образце венозной крови пациента.

Изобретение относится к медицине и касается способа дифференциальной диагностики стеатоза печени и неалкогольного стеатогепатита у мужчин. Сущность способа заключается в том, что определяют соотношение концентрации 3-гидроксимасляной и 3-метил-2-оксовалериановой кислот, определенных хроматографическим методом в образце венозной крови пациента.

Изобретение относится к cпособу определения концентрации полиглутаматов метотрексата, включающему забор венозной крови пациента, отделение образца эритроцитарной массы, выделение из него полиглутаматов метотрексата посредством проведения реакции преципитации и определение концентрации полиглутаматов метотрексата с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием (ВЭЖХ-МС-МС), причем отделенный образец эритроцитарной массы перед выделением из него полиглутаматов метотрексата замораживают при температуре -80±2°С с последующим размораживанием при температуре 6-10°С, при этом реакцию преципитации проводят при температуре 6-10°С посредством введения в образец подкисленного ацетонитрила, его интенсивного перемешивания с последующим центрифугированием при 12000±10 rpm в течение 15±2 мин и отбора верхнего слоя, содержащего полиглутаматы метотрексата для последующего анализа на ВЭЖХ-МС-МС.

Изобретение относится к медицине, а именно к клинической диагностике, и может быть использовано для выявления сахарного диабета первого типа у беременных. Осуществляют забор образца крови пациента; пробоподготовку образца крови пациента с получением аналита; определение содержания в качестве маркера сахарного диабета первого типа в аналите белка Angiotensinogen и/или Apolipoprotein С-III и/или Vitronectin.

Изобретение относится к области химии и фармацевтики, а именно к способу определения процента разложения соединения формулы (I) в результате контакта с частью контейнера для медицинского применения. Способ включает получение водного раствора, содержащего определённое количество соединения формулы (I): , где каждый из X, R1, R2, R3, R4, R5 представляет собой определенные заместители, n и m независимо друг от друга представляет собой целое число от 0 до 10; добавление к раствору части контейнера для медицинского применения на период времени от 1 часа до 2 месяцев, при температуре 5 - 80°C; анализ полученного раствора посредством жидкостной хроматографии; определение процента разложения.

Изобретение относится к медицине, а именно к лабораторной диагностике, и может быть использовано при осуществлении пробоподготовки для идентификации этилглюкуронида в крови. Готовят образец биосубстрата и осуществляют его хромато-спектрометрическое исследование с регистрацией сигнала масс-спектрометра в виде профиля пиков анализируемых веществ на хроматограмме с последующим определением принадлежности каждого пика анализируемому веществу и сравнением с эталонными аналитическими характеристиками искомого вещества.

Изобретение относится к области медицины, в частности к неврологии и клинической лабораторной диагностике, и предназначено для диагностики болезни Паркинсона, ассоциированной с мутациями в гене глюкоцереброзидазы (GBA). В крови измеряют концентрацию лизосфинголипида гексозилсфингозина (HexSph), представляющего смесь лизосфинголипидов глюкозилсфингозина (GlcSph) и галактозилсфингозина (GalSph).

Изобретение относится к медицине, а именно к фармакологии, и может быть использовано для пробоподготовки при одновременном определении лозартана, его метаболита лозартанкарбоновой кислоты (Е-3174) и глибенкламида высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием (ВЭЖХ-МС/МС) в сыворотке крови и/или моче человека.

Изобретение относится к медицине, а именно к фармакологии, и может быть использовано для пробоподготовки при одновременном определении лозартана, его метаболита лозартанкарбоновой кислоты (Е-3174) и глибенкламида высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием (ВЭЖХ-МС/МС) в сыворотке крови и/или моче человека.

Группа изобретений относится к области биотехнологии. Предложен способ отслеживания концентрации по меньшей мере одного типа загрязняющей примеси в потоке текучей среды, а также применение указанного способа в непрерывном процессе для получения биофармацевтического, биологического, высокомолекулярного продукта.
Наверх