Поглотитель диоксида углерода, способ его приготовления и способ очистки газовых смесей

Группа изобретений относится к поглотителю для удаления диоксида углерода из газовых смесей, способу его приготовления, а также к способу очистки газовых смесей от диоксида углерода. Предложен поглотитель диоксида углерода, содержащий карбонат калия, нанесенный на пористую матрицу из аэрогеля диоксида циркония в количестве 71-91 мас.%, остальное-карбонат калия. Описан вариант метода приготовления поглотителя. Описан также способ очистки газовых смесей от диоксида углерода. В предлагаемом способе проводится выделение диоксида углерода из смеси предложенными поглотителями, при этом выделение СО2 из газовых смесей осуществляется при температуре 10-50°С и парциальном давлении СО2 на стадии сорбции в газовой смеси 10 Па - 0,5 кПа периодически с процессом термической регенерации поглотителя при температуре 150-300°С. Указанный способ можно использовать для адсорбционного выделения диоксида углерода из атмосферного воздуха и дымовых газов, вентиляционных систем. Группа изобретений обеспечивает высокую и стабильную сорбционную емкость регенерируемого поглотителя в процессе эксплуатации. 3 н.п. ф-лы, 3 ил., 1 табл., 4 пр.

 

Изобретение относится к области адсорбционного разделения газов. Адсорбционное удаление CO2 из газовых смесей является одним из широко используемых приемов химической технологии и активно используется при очистке природного газа, тонкой очистке воздуха перед криогенным разделением, при приготовлении защитных атмосфер и т.д.

К числу новых областей применения этого метода можно отнести выделение CO2 из объектов окружающей среды с целью нивелирования последствий парникового эффекта. На сегодняшний день регенерируемые сорбенты СО2 рассматриваются в качестве перспективных материалов для обратимого связывания диоксида углерода в процессах очистки дымовых газов электростанций, промышленных предприятий, сорбционного выделения СО2 из воздуха.

Существующие адсорбционные методы выделения CO2 зачастую оказываются непригодными для очистки влажных газовых смесей с низким содержанием СО2 (до 0,5 % об.), поскольку традиционные типы поглотителей (цеолиты, активированные угли) имеют, как правило, значительно большее сродство к воде, нежели к CO2, поэтому резко снижают свою емкость во влажной атмосфере. Для уменьшения влажности очищаемой газовой смеси и повышения емкости цеолитов по диоксиду углерода в ряде патентов предложено использовать блок предварительной осушки, устанавливаемый перед адсорбером с цеолитом (US 6309445, B01D 53/02, 30.10.2001; US 6106593, B01D 53/04, 22.08.2000). Однако такой метод решения проблемы ведет к существенному усложнению технологической схемы процесса. В патенте (US 3865924, B01D 53/02, 11.02.1975) описан регенерируемый поглотитель CO2, представляющий собой механическую смесь порошков оксида алюминия и карбоната калия. Такой поглотитель предлагают применять для удаления диоксида углерода в системах жизнеобеспечения, например, подводных лодок. Вода здесь не препятствует сорбции CO2, а напротив, является необходимым компонентом, т.к. поглощение CO2 осуществляется по реакции:

K2CO3+H2O+CO2=2KHCO3.

В патенте (ЕР 1084743, B01D 53/02, 21.03.2001) для удаления CO2 предлагают использовать оксид алюминия, допированный небольшими добавками щелочных металлов (до 7,25 мас.% K2O и/или Na2O). Достоинством данного метода удаления диоксида углерода является то, что активное вещество находится в порах матрицы и не вызывает коррозии оборудования, а сам поглотитель может выпускаться в виде гранул любого размера и формы или в виде блоков. В то же время небольшое содержание оксидов щелочных металлов не обеспечивает высокой емкости поглотителя. Аналогичная система разработана и для процесса короткоцикловой безнагревной адсорбции (US 5656064, B01D 53/02, 12.08.1997).

В патенте Японии (JP 08040715, С01B 31/20, 13.02.1996) описан более совершенный способ удаления CO2 пористыми материалами (активированный уголь, оксид алюминия, цеолит, кизельгур или их смесь), на которые нанесен гидрат карбоната калия и/или натрия. Регенерацию сорбента производят водяным перегретым паром. Активным компонентом поглотителя, обеспечивающим его высокую емкость, является диспергированный в порах матрицы карбонат щелочного металла. Следует отметить, что карбонаты щелочных металлов вступают в необратимые химические взаимодействия с некоторыми носителями. Это приводит к уменьшению сорбционной емкости поглотителей в многоцикловом режиме эксплуатации.

Авторы патента (RU 2244586, B01D 53/02, 20.01.2005) указывают, что перспективным носителем для карбоната калия является оксид алюминия. Поглотитель с матрицей из оксида алюминия обладает наиболее высокой скоростью сорбции CO2, однако подвергается значительной дезактивации в ходе циклов сорбции/регенерации.

Наиболее близким к предлагаемому изобретению является патент (RU 2493906, B01J 20/06, B01D 53/02, 27.09.2013), в котором для улучшения стабильности сорбционной емкости предложено наносить карбонат калия на пористый носитель из оксида иттрия. Недостатком данного материала является низкая сорбционная емкость по диоксиду углерода на уровне 2-3 мас.%. Такое низкое значение сорбционной емкости обусловлено макропористой структурой оксида иттрия, в результате чего не удается получить дисперсный активный компонент на поверхности носителя.

Изобретение решает задачи получения многоразового регенерируемого поглотителя для селективного поглощения диоксида углерода из газовых смесей и разработки эффективного способа удаления диоксида углерода из газовых смесей, в частности, из дымовых газов крупных стационарных источников и атмосферного воздуха.

Задача решается поглотителем для удаления диоксида углерода из газовых смесей, который содержит активный компонент - карбонат калия, нанесенный на носитель, в качестве носителя используют пористую матрицу из аэрогеля диоксида циркония, таким образом, полученный поглотитель содержит ZrO2 в количестве 71-91 мас.%, остальное - карбонат калия K2CO3.

Задача решается также способом приготовления поглотителя, по которому на 1й стадии готовят носитель - аэрогель ZrO2 - эпоксидным методом. На 2й стадии осуществляют синтез регенерируемых поглотителей CO2 на основе аэрогеля из диоксида циркония методом пропитки пористого носителя по влагоемкости водным раствором K2CO3. Пропитанные гранулы аэрогеля высушивают в сушильном шкафу при температуре 250°С в течение 3 ч.

Физико-химические характеристики полученных поглотителей и исходного аэрогеля из диоксида циркония приведены в Таблице. Микроизображение просвечивающей электронной микроскопии аэрогеля из диоксида циркония представлено на Фиг. 1. Микрофотографии сканирующей электронной микроскопии аэрогеля ZrO2 (a, в) и поглотителя диоксида углерода K2CO3/ZrO2 (б, г) с различным увеличением: ×3000 (a, б) и ×10000 (в, г) приведены на Фиг. 2.

Задача решается также способом очистки газовых смесей от СО2, в котором атмосферный воздух или газовую (дымовую) смесь пропускают через неподвижный слой поглотителя, который содержит пористую матрицу из аэрогеля диоксида циркония ZrO2 в количестве 71-91 мас. %, остальное - карбонат калия K2CO3, при температуре 10-50°С, парциальном давлении СО2 в газовой смеси 10 Па - 0,5 кПа.

После насыщения поглотителя диоксидом углерода осуществляют его регенерацию посредством нагрева в диапазоне температур 150-300°С в токе воздуха или инертного газа.

Указанный способ можно использовать для адсорбционного выделения диоксида углерода из атмосферного воздуха и дымовых газов, из воздушных потоков в системах вентиляции помещений.

Технический результат - высокая и стабильная сорбционная емкость регенерируемого поглотителя в процессе эксплуатации. Сорбционная емкость поглотителя K2CO3/ZrO2 в последовательных циклах «сорбция/регенерация» представлена на Фиг. 3.

Сущность изобретения иллюстрируется следующими примерами, таблицей и Фиг.1-3:

Фиг. 1 - Микроизображение просвечивающей электронной микроскопии аэрогеля из диоксида циркония.

Фиг. 2 - Микрофотографии сканирующей электронной микроскопии аэрогеля ZrO2 (a, в) и композитного сорбента K2CO3/ZrO2 (б, г) с различным увеличением: ×3000 (СЭМ a, б) и ×10000 (в, г).

Фиг. 3 - Сорбционная емкость поглотителя K2CO3/ZrO2 в последовательных циклах сорбция/регенерация.

Пример 1

Для приготовления поглотителя на 1й стадии синтезируют аэрогель ZrO2 в соответствии с методикой, приведенной в публикации (Zhong, L., Chen, X., Song, H., Guo, K., Hu, Z. Synthesis of monolithic zirconia aerogel via a nitric acid assisted epoxide addition method (2014) RSC Advances, 4 (60), pp. 31666-31671. DOI: 10.1039/c4ra04601c). Для этого 1 мольную часть ZrOCl2*8H2O растворяют в спиртово-водном растворе, после чего к раствору быстро приливают 5 мольных частей пропиленоксида. Затем раствор перемешивают в течение 1-2 мин и оставляют для гелирования на 6-10 мин. Далее гель ZrO2 выдерживают 2 суток и отмывают этанолом в течение 5 дней. Гель помещают в автоклав, полностью заполненный этанолом. Затем автоклав нагревают до 300°С со скоростью 70°С/ч, давление в автоклаве поддерживают на уровне 100 атм. После достижения температуры в 300°С давление в автоклаве сбрасывают до атмосферного со скоростью 0,8 атм/мин. После сброса давления и остывания из полученной массы аэрогеля формируют фракцию с размером зерен 0,5-2 мм. Микроизображение просвечивающей электронной микроскопии аэрогеля из диоксида циркония представлено на Фиг. 1.

Фракцию аэрогеля делят на 4 части, каждую часть пропитывают по влагоемкости 1-, 2-, 3-, 4-молярным раствором K2CO3 соответственно. После пропитки гранулы поглотителей высушивают в сушильном шкафу при температуре 250°С в течение 3 ч. По данным элементного анализа содержание карбоната калия в приготовленных образцах поглотителей составляет 9, 16, 23, 29 мас.%, соответственно, остальное - диоксид циркония ZrO2.

Проводят измерение пористой структуры полученных сорбентов с использованием метода низкотемпературной адсорбции азота. По данным азотной порометрии (Таблица) гранулы образцов сорбентов обладают объемом пор 0,11-0,58 мл/г, развитой мезопористой структурой с высокой величиной удельной поверхности 43-119 м2/г. Микрофотографии сканирующей электронной микроскопии аэрогеля ZrO2 (a, в) и композитного сорбента K2CO3/ZrO2 (после пропитки 3M раствором K2CO3 и сушки) (б, г) с различным увеличением: ×3000 (СЭМ a, б) и ×10000 (в, г) представлены на Фиг. 2.

Пример 2

Получают по примеру 1 поглотитель путем пропитки аэрогеля диоксида циркония 3-M раствором K2CO3 по влагоемкости. Полученный поглотитель содержит 23 мас.% карбоната калия, 77 мас.% аэрогеля ZrO2.

Указанный поглотитель загружают в проточный адсорбер, осуществляют сорбционный эксперимент. Сорбционный эксперимент включает в себя следующие стадии:

1) сорбция CO2 из атмосферного воздуха (парциальное давление СО2 в смеси - 40-45 Па) в течение 6 ч при комнатной температуре (15-25°С) и фиксированной относительной влажности воздуха 25%, скорость подачи воздуха 2,3 л/мин. В процессе сорбции происходит полное насыщение поглотителя углекислым газом, которое определяется по кривой проскока концентрации СО2 на выходе из реактора;

2) термическая регенерация сорбента при температуре 200°С в атмосфере аргона (скорость потока Ar - 50 мл/мин).

В процессе регенерации происходит десорбция CO2 из поглотителя. На стадии десорбции регистрируют зависимость значений выходной концентрации углекислого газа от времени, из которой рассчитывают значение сорбционной емкости материала по CO2:

где: (с(t)) - зависимость значений выходной концентрации углекислого газа (в об. %) от времени (в минутах); U0 - входная скорость потока аргона (0,05 л/мин), m - масса поглотителя (1,8-2,0 г), M - молярная масса CO2 (44 г/моль), Vm - молярный объем идеального газа (24.4 л/моль при стандартных условиях: Т = 298 K и P = 1 бар).

Циклы сорбции/регенерации осуществляют несколько раз. Изменение cорбционной емкости в ходе испытаний показано на Фиг.3. Сорбционная емкость поглотителя K2CO3/ZrO2 составляет 3,5-3,6 мас.% при температуре регенерации 150°С. При проведении регенерации при температуре 200°С сорбционная емкость поглотителя составляет 4,6-4,7 мас.%. Повышение температуры регенерации до 250 и 300°С приводит к увеличению сорбционной емкости поглотителя до 4,8-4,9 и 4,9-5,0 мас.% соответственно.

Пример 3

Получают по примеру 1 поглотитель путем пропитки аэрогеля диоксида циркония 1-M раствором K2CO3 по влагоемкости. Полученный поглотитель содержит 9 мас.% карбоната калия, 91 мас.% аэрогеля ZrO2.

Указанный поглотитель загружают в проточный адсорбер, осуществляют сорбционный эксперимент аналогично примеру 2 при температуре 10 °С и парциальном давлении СО2 в смеси 10 Па. После завершения стадии сорбции проводят регенерацию поглотителя при температуре 200°С. Сорбционная емкость поглотителя составляет 0,4 мас.%.

Пример 4

Получают по примеру 1 поглотитель путем пропитки аэрогеля диоксида циркония 4-M раствором K2CO3 по влагоемкости. Полученный поглотитель содержит 29 мас.% карбоната калия, 71 мас.% аэрогеля ZrO2. Поглотитель загружают в проточный адсорбер, осуществляют сорбционный эксперимент аналогично примеру 2 при температуре 50°С и парциальном давлении СО2 в смеси 0,5 кПа. После завершения стадии сорбции проводят регенерацию поглотителя при температуре 200°С. Сорбционная емкость поглотителя составляет 4,1 мас.%.

Таблица - Текстурные характеристики поглотителей и аэрогеля ZrO2.

Материал Концентрация K2CO3 в пропиточном растворе, моль/л Содержание K в поглотителе, мас.% Содержание K2CO3 в поглотителе, мас.% Удельная поверхность, м2 Объем пор, см3 Средний размер пор, нм
ZrO2 119 0,58 19,6
K2CO3/ZrO2 1 5 9 86 0,19 8,8
K2CO3/ZrO2 2 9,2 16 63 0,14 8,9
K2CO3/ZrO2 3 13,1 23 46 0,13 11,3
K2CO3/ZrO2 4 16,4 29 43 0,11 10,2

1. Поглотитель диоксида углерода СО2 из газовых смесей, содержащий активный компонент – карбонат калия, нанесенный на носитель, отличающийся тем, что в качестве носителя он содержит пористую матрицу из аэрогеля диоксида циркония ZrO2 в количестве 71-91 мас.%, остальное – карбонат калия K2CO3 .

2. Способ приготовления поглотителя диоксида углерода из газовых смесей нанесением карбоната калия на носитель, отличающийся тем, что поглотитель готовят пропиткой по влагоемкости гранул пористой матрицы из аэрогеля диоксида циркония ZrO2 водным раствором активного компонента карбоната калия K2CO3, после чего гранулы высушивают, полученный поглотитель содержит пористую матрицу из аэрогеля диоксида циркония ZrO2 в количестве 71-91 мас. %, остальное – карбонат калия K2CO3.

3. Способ очистки газовых смесей от диоксида углерода СО2 с использованием поглотителя, содержащего карбонат калия, отличающийся тем, что применяют поглотитель по п. 1 или приготовленный по п. 2, удаление диоксида углерода проводят из смесей с парциальным давлением диоксида углерода 10 Па - 0,5 кПа, при этом выделение диоксида углерода осуществляют в диапазоне температур 10-50°С, затем поглотитель регенерируют в диапазоне температур 150-300°С.



 

Похожие патенты:

Изобретение относится к области адсорбционной техники для получения модифицированных активных углей. Способ получения модифицированного активного угля включает промывание промышленного активного угля (АУ) дистиллированной водой, обработку 5%-ным раствором глицина при отношении массы угля (г) к объему раствора (см3) - 1:100 в течение 24 часов, а затем дальнейший прогрев при температуре 200°С в атмосфере воздуха в течение 1 часа.

Изобретение относится к cпособу получения модифицированного сорбента для извлечения ионов Cu(II), Ni(II) и Zn(II) из водных растворов, заключающемуся в получении раствора хитозана в 1% уксусной кислоте, интенсивном перемешивании, постепенном добавлении эпихлоргидрина в качестве сшивающего агента и перемешивании, последующем капельном введении приготовленной смеси в водный щелочной раствор, выдерживании в нем образовавшихся гранул и тщательной промывке дистиллированной водой до нейтрального рН, причем гомогенизацию геля хитозана проводят путем обработки ультразвуком в течение 20-40 мин, капельное введение приготовленного геля сшитого хитозана осуществляют в водный раствор гидроксида натрия с концентрацией 1 М, в котором образовавшиеся гранулы выдерживают в течение 20-50 мин с последующей промывкой дистиллированной водой, а модифицирование гранул хитозана проводят в водном растворе, содержащем 2-этилимидазол и хлорид никеля в молярном соотношении 2-этилимидазол / Ni2+, равном 2:1-8:1.
Изобретение относится к области экологии, сельскому хозяйству, в частности к способам получения гуматосодержащего препарата, и может быть использовано при производстве препаратов, восстанавливающих плодородие почв, а также при производстве препаратов для извлечения и детоксикации тяжелых металлов, радионуклидов, разложения углеводородов нефти в сточных водах, производственных илах, в грунтах.

Изобретение относится к химической технологии, а именно к способу получения гранулированного неорганического сорбента, состоящего из твердого раствора оксидов титана и циркония, предназначенного для работы в высокотемпературных и агрессивных средах. Описан способ получения гранулированного неорганического сорбента, состоящего из твердого раствора оксидов титана и циркония, заключающийся в смешивании исходных компонентов, диспергировании полученной смеси в гелирующую среду, промывке образовавшихся частиц, сушке и прокаливании, отличающийся тем, что в качестве исходных компонентов используют гексахлортитановую кислоту и оксихлорид циркония в мольном соотношении Ti/Zr (0,5-0,99)/(0,01-0,5) с добавлением водного раствора поливинилового спирта до получения концентрации его в конечной смеси 50-200 г/л, перед диспергированием полученный раствор выдерживают при комнатной температуре в течение 1-7 дней, сушку гелевых частиц проводят на воздухе в течение 1-24 часов при температуре 25-80°C, а прокаливание проводят на воздухе при температуре 300-450°C.
Изобретение относится к способу получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония и может быть использовано в технологии получения регенерируемых поглотителей диоксида углерода для систем концентрирования диоксида углерода, для очистки от диоксида углерода атмосферы герметичных объектов, там где необходимо получение очищенных свободных от диоксида углерода газов.
Изобретение относится к области аналитической химии и молекулярной биологии и может быть использовано для получения полимера, содержащего отпечатки (импринтинг) молекул, с последующим его применением для анализа и разделения молекулярного материала. Способ получения молекулярно-импринтированного полимера на основе полианилина на подложке заключается в очистке подложки и проведении её модификации путём окислительной полимеризации анилина либо его производных в присутствии окислителя до образования на подложке электропроводной пленки полианилина, удалении остатков окислителя и анилина либо его производных, проведении дальнейшего синтеза в смеси, состоящей из анилина, либо его производных и окислителя в кислой среде.

Изобретение относится к средам на основе железа (ZVI), предназначенным для удаления одного или множества загрязнителей из почвы, воды или сточных вод. Фильтровальная среда для уменьшения содержания загрязнителей в текучих средах включает промытый в HCl порошок на основе железа, при этом удельная площадь поверхности по ВЕТ промытого кислотой порошка на основе железа составляет 1,2-10 м2/г, промытый кислотой порошок характеризуется содержанием Fe, по меньшей мере, 90 мас.%, характеризуется величиной pH-специфического окислительно-восстановительного потенциала (PSE) менее -0,03 в равновесных условиях (спустя 48 ч), причем PSE определяется как результат деления окислительно-восстановительного потенциала (Eh) на рН, Eh/pH, измеренных в общем объеме, состоящем из 50 мл бескислородной воды и 1 г упомянутого порошка на основе железа, при этом средний размер частиц D50 промытого кислотой порошка на основе железа составляет от 20 до 10000 мкм.

Изобретение относится к способу получения дуолита, при котором вермикулит нагревают при температуре 1000-1100°С в течение 5-10 минут, в результате чего получают вспученный вермикулит, который нагревают под давлением в 2,5-3 атм в течениЕ 20-30 мин при температуре 150-200°C с добавлением 3% каустической соды и 5% технической соли, причём на одну тонну вспученного вермикулита берут 30 кг 3% каустической соды и 50 кг 5% технической соли.

Изобретение относится к способу модификации кристаллического неорганического каркаса адсорбента с помощью покрытий, в частности к способу уменьшения размера входного отверстия пор кристаллического неорганического адсорбента. Способ включает приведение адсорбента в контакт с силиконовым предшественником для образования смеси и обжиг смеси при температуре и в условиях, позволяющих эффективным образом получить адсорбент с требуемым размером входного отверстия пор.

Изобретение относится к способам модифицирования природных полисахаридных сорбентов, предназначенных для извлечения ионов тяжелых металлов сорбцией из растворов различного состава, образующихся в результате проведения разнообразных технологических процессов, и может быть использовано для совершенствования мембранных и сорбционных технологий, в водоподготовке, при разработке технологий утилизации ионов тяжелых металлов из водных растворов и сточных вод различной природы.

Изобретение относится к химической технологии, а именно к способу получения гранулированного неорганического сорбента, состоящего из твердого раствора оксидов титана и циркония, предназначенного для работы в высокотемпературных и агрессивных средах. Описан способ получения гранулированного неорганического сорбента, состоящего из твердого раствора оксидов титана и циркония, заключающийся в смешивании исходных компонентов, диспергировании полученной смеси в гелирующую среду, промывке образовавшихся частиц, сушке и прокаливании, отличающийся тем, что в качестве исходных компонентов используют гексахлортитановую кислоту и оксихлорид циркония в мольном соотношении Ti/Zr (0,5-0,99)/(0,01-0,5) с добавлением водного раствора поливинилового спирта до получения концентрации его в конечной смеси 50-200 г/л, перед диспергированием полученный раствор выдерживают при комнатной температуре в течение 1-7 дней, сушку гелевых частиц проводят на воздухе в течение 1-24 часов при температуре 25-80°C, а прокаливание проводят на воздухе при температуре 300-450°C.
Наверх