Способ определения содержания железа в мышечной ткани рыбы

Изобретение относится к медицине, а именно к животноводству, экологии и ветеринарии. Осуществляется микроэлементный анализ чешуи рыбы. Выявляют концентрацию одного или нескольких элементов в чешуе на выбор - Fe и/или Mg. Затем рассчитывают уравнения регрессии по оригинальным формулам для расчета концентрации железа в мышцах. Способ прижизненный, неинвазивный, практичный и доступный в использовании. 3 табл., 1 пр.

 

Данное изобретение относится к животноводству, рыбоводству, экологии, ветеринарии и служит в качестве теста для определения уровня концентрации железа в мышцах рыбы.

Железо - это один из самых важных химических элементов для всех биологических организмов, а также для человека. В человеческом организме содержится около 3,5-4,5 г железа. 70% железа присутствует в крови, 30% - в печени, костном мозге, селезенке, мышцах. Железо принимает участие в транспортировке и хранении кислорода, синтезе ДНК, белковом обмене, синтезе гормонов щитовидной железы, производстве соединительной ткани, нейромедиаторов, играет важную роль в поддержании иммунитета. Однако, данный элемент опасен для организма при его избытке, так как происходит нарушение углеводного обмена, а также может возникнуть цирроз печени и некроз кишечника. Дефицит железа в организме рыб приводит к замедлению роста, развитию железодефицитной гипохромной анемии, снижению гемоглобина и гематокрита, а также пониженному эритропоэзу.

Поэтому необходимо определять и контролировать уровень железа в организме животных, так как его дисбаланс может вызвать нарушение гомеостаза организма, как следствие влиять на качество получаемой продукции. Производные кожи широко используются для установления концентрации тяжелых металлов в органах и тканях сельскохозяйственных животных (Патент RU 2421726 С1, Патент RU 2426119 С1). У рыб известен способ определения содержания меди в мышечной ткани с использованием в качестве маркера чешую (Патент RU 2555518 С1).

В настоящее время существует способ определения железа в рыбе (ГОСТ 26928-86). Сырье и продукты пищевые. Методы определения железа. - М: ИПК Издательство стандартов, 2002. - С. 1-8.). Тем не менее, данный метод не позволяет осуществить прижизненную диагностику уровня концентрации железа, так как отбор проб для анализа производится уже от убитых рыб. От данного метода предлагаемый нами способ отличается тем, что осуществляется определение химического состава чешуи, отобранной от живых рыб, методом атомно-эмиссионной спектрометрии с индуктивносвязанной плазмой. Определяют концентрацию Mg и/или Fe в чешуе для определения железа в мышцах производителей и самок. И рассчитывают уравнение регрессии:

у = - 0,0998х+13,532, где х содержание Fe (мг/кг) в чешуе,

у - содержание Fe (мг/кг) в мышцах.

у = - 1,943х+12,918, где х содержание Mg (г/кг) в чешуе,

у - содержание Fe (мг/кг) в мышцах.

Данным способом можно оценить содержание железа в мышечной ткани рыбы вида Stizostedion lucioperca. Поставленная задача решается с помощью установления уровня концентрации Mg и/или Fe в чешуе с дальнейшим расчетом уровня железа в мышцах с использованием уравнений регрессии. По аккумуляции на выбор Fe и/или Mg в чешуе устанавливают содержание железа в мышечной ткани.

Пример выполнения. Пробы чешуи были отобраны от судака (Stizostedion lucioperca) в возрасте 3-4,5 лет. Судак был выловлен в период с ноября по декабрь 2019 г. в Новосибирском водохранилище. Чешуя для данного исследования была тщательно промыта. Для того чтобы очистить чешую от загрязнения навеску чешуи помещали в колбу с дистиллированной водой, далее пробу перемешивали в течение одной минуты миксером со скоростью вращения 1000 об/мин. В последующем воду меняли до 10 раз, повторяя данный этап. Затем чешуя промывалась в ацетоне марки ОСЧ 49-5 в течение двух минут, далее очищается 3 раза деионизированной водой и высушивалась при комнатной температуре.

Для анализа взвешивали пробу массой 100 мг и помещали в кварцевую чашку, затем ставили в холодную кварцевую печь. Печь разогревали до температуры 250°С, экспозиция при данной температуре составила 15 минут. Затем температуру увеличивали до 450°С с экспозицией 15 минут. Далее пробу оставляли в печи остывать до комнатной температуры. После обугливания проба перетиралась в кварцевых чашках, далее из порошка подготовленной пробы отбирали навеску массой 10 мг и вводили 50 мг графитового порошка и 40 мг спектроскопического буфера (15% NaCl и графитовый порошок). Для самого исследования отбиралось 20 мг из полученной смеси.

Химические элементы в чешуе и мышечной ткани устанавливались с помощью атомно-эмиссионного спектрального анализа на базе Аналитического центра коллективного пользования Института геологии и минералогии им. B.C. Соболева СО РАН. Для исследования чешуи были использованы двухструйный дуговой плазмотрон «Факел» и многоканальный атомно-эмиссионный спектрометр «Гранд» производства ООО «ВМК-оптоэлектроника» (Россия). Для анализа мышечной ткани использовали атомно-абсорбционный спектрофотометр Perkin Elmer 360 (США). Подготовка проб для атомно-абсорбционного анализа происходила поэтапно: в посуду после мойки в мыльном растворе обмывали водопроводной водой и ополаскивали бидистиллированной водой, затем сушили. Навески (весом 100 г) измельчались до однородной массы, далее высушивались в печи при температуре 60-70°С примерно 12 часов до постоянной массы. Из приготовленного сухого остатка брали 3 г, которые озоляли в муфельной печи при температуре 500-550°C. Затем, через 10-15 часов минерализация оканчивалась, зола была серого или белого цвета. Пробы остывали при комнатной температуре, далее полученный зольный остаток массой 3 г вводили в 3-х мл 50% соляной кислоты, затем пробы нагревались на электроплите для извлечения сухого осадка, далее данный остаток переносился в колбу путем разведение его в 25 мл дистиллированной воды. В готовом растворе определяли элементный состав.

Данные по содержанию железа и магния в мышечной ткани представлены в табл.1. В мышцах судака содержание микроэлемента железа было в много раз меньше, чем макроэлемента магния. Фенотипическая изменчивость железа была выше, чем концентрация магния в 1,8 раз (Р<0,01).

В табл. 2 показаны данные по содержанию магния и железа в чешуе рыб. Концентрация железа в чешуе в 8,1 раз выше, чем в мышцах (Р<0,001). Индивидуальная изменчивость содержания железа в мышечной ткани и чешуе была одинаково высокой.

Изменчивость уровня магния в чешуе была в 1,5 раз выше, чем в мышцах (Р<0,01). Установлено, что между изученными показателями имеются средние значения корреляций (табл. 3). Поэтому, при наличии связей между данными элементами, можно рассчитать уравнения регрессии, для прогнозирования содержания железа в мышцах установив концентрацию одного или нескольких элементов на выбор - Mg и/или Fe в чешуе.

Следовательно, с помощью данного способа можно провести прижизненную оценку интерьера рыбы по содержанию железа в мышцах, применяя только лишь пробы чешуи.

Способ определения содержания железа в мышечной ткани рыбы, включающий анализ биосубстрата, отличающийся тем, что осуществляется микроэлементный анализ чешуи рыбы, а также выявляется концентрация одного или нескольких элементов в чешуе на выбор - Fe и/или Mg, а затем рассчитываются уравнения регрессии:

у = - 0,0998х+13,532, где х содержание Fe (мг/кг) в чешуе,

у - содержание Fe (мг/кг) в мышцах,

у = - 1,943х+12,918, где х содержание Mg (г/кг) в чешуе,

у - содержание Fe (мг/кг) в мышцах.



 

Похожие патенты:

Изобретение относится к животноводству, ветеринарии и экологии. Проводят микроэлементный анализ копытного рога свиней, определяют в копытном роге концентрацию Со и/или Mg, рассчитывают уравнения регрессии по концентрации Со и/или Mg в копытном роге и определяют содержание Zn в почках по оригинальным формулам.
Изобретение относится к медицине, а именно к оториноларингологии и хирургии, и может быть использовано для диагностики воспалительной деструкции височной кости при остром мастоидите. Способ включает исследование концентрации остеокальцина в крови и дезоксипиридинолина в моче.

Изобретение относится к сельскому хозяйству и, в частности, к пчеловодству. Способ диагностики поражения пчел нозематозом заключается в том, что среднюю кишку пчел фиксируют в 10%-ном нейтральном формалине, промывают в дистиллированной воде, пропитывают парафином и изготавливают парафиновые срезы толщиной 4 мкм.

Изобретение относится к медицине и может быть использовано для диагностики патологических состояний человека. Проводят сбор анамнеза у пациента путем интерактивного опроса, клинико-лабораторные и инструментальные исследования.

Изобретение относится к медицине, а именно к клинической лабораторной диагностике и кардиохирургии, и раскрывает способ оценки повреждения миокарда и риска развития осложнений после операции на сердце в условиях искусственного кровообращения. Способ характеризуется тем, что в крови пациента определяют уровень высокочувствительного тропонина дважды: через 2-6 часов - Tn ранний и через 12-24 часа - Tn поздний, рассчитывают индекс повреждения миокарда как отношение Tn поздний к Tn ранний и при значении индекса повреждения 1,8 и более оценивают повреждение миокарда и риск развития осложнений как высокие.

Изобретение относится к области медицины, а именно к ревматологии, и может быть использовано для определения клинически значимой усталости у больных ревматоидным артритом (РА) с коморбидными расстройствами тревожно-депрессивного спектра (РТДС). У больного ревматоидным артритом (РА) на фоне 5-летней терапии базисными противовоспалительными препаратами (БПВП) или базисными противовоспалительными препаратами в комплексе с генно-инженерными биологическими препаратами (ГИБП) и/или психофармакотерапией и сопутствующего расстройства тревожно-депрессивного спектра определяют: наличие до начала терапии клинически значимой усталости согласно шкале FSS; наличие малой депрессии после 5-летней терапии РА; наличие большой депрессии после 5-летней терапии РА; наличие перенесенного инфаркта миокарда (ИМ) до начала терапии; возраст больного РА до начала терапии, в годах; выраженность после 5-летней терапии РА функциональных ограничений согласно индексу HAQ; уровень С-реактивного белка (СРБ) в сыворотке крови после 5-летней терапии РА; воспалительная активность РА согласно индексу DAS28 после 5-летней терапии РА, в баллах.

Изобретение относится к отрасли животноводства, экологии и ветеринарии и предназначено для использования в качестве теста на степень концентрации лития в мышечной ткани крупного рогатого скота. Способ определения содержания лития в мышечной ткани крупного рогатого скота включает анализ биосубстрата, который заключается в том, что проводят микроэлементный анализ волоса крупного рогатого скота.
Изобретение относится к медицине, а именно к урологии, клинической андрологии, и может быть использовано для прогнозирования эффективности низкоинтенсивной лазерной терапии (НИЛТ) при секреторной тератозооспермии. До начала терапии определяют в плазме крови уровень фолликулостимулирующего гормона, количество лейкоцитов в эякуляте, прогрессивную подвижность и концентрацию сперматозоидов.

Изобретение относится к фармации, а именно к фармацевтической химии. Раскрыт способ определения концентрации цефтриаксона в тканях операционного поля, заключающийся в том, что осуществляют пробоподготовку настаиванием с извлекателем, экстракцией органической системой растворителей и реэкстракцией буферным раствором Бриттона-Робинсона с последующим анализом методом капиллярного электрофореза.

Изобретение относится к области медицины, в частности к кардиологии, геронтологии и гериатрии, и предназначено для прогнозирования ухудшения состояния пожилого больного с инфарктом миокарда и синдромом старческой астении. Определяют содержание эндотелина-1 и десквамированных эндотелиоцитов в крови.

Изобретение относится к области биотехнологии. Предложен способ определения координат изменения структуры клетки по фазовым изображениям при модуляции фазы волнового фронта. Способ включает деление проходящего через клетку излучения на несколько пучков, выбор на полученном под совпадающим с оптической осью в первый момент времени углом фазовом изображении точки с координатами (x1,y1) на поверхности клетки, где определяют изменение структуры клетки, выбор на полученных под другими углами фазовых изображениях значений фазы с координатами (x1sinϕ+zcosϕ,y1), их суммирование для получения зависящей от координаты z вдоль оптической оси функции, вычисление суммы фаз с теми же координатами в другой момент времени, получение такой же функции, значения координаты z, при которой достигается глобальный экстремум разности этих двух функций, и определение координаты z1 внутри клетки, где происходит изменение структуры клетки, причем за искомое значение координат изменения структуры клетки принимают (x1,y1,z1). Изобретение обеспечивает определение изменения положения мембраны и внутренней структуры внутри клетки. 3 ил., 1 табл.
Наверх