Жидкостный ракетный двигатель, выполненный по схеме без дожигания в камере

Изобретение относится к ракетной технике и может быть использовано в конструкциях жидкостных ракетных двигателей, выполненных по схеме без дожигания в камере. Изобретение направлено на уменьшение потерь удельного импульса двигателя, связанных с приводом ТНА. Результат обеспечивается повышением удельного импульса сопла выхлопной системы ТНА за счет дожигания рабочего тела турбины ТНА - газа с избытком горючего окислителем, подаваемым в газовод выхлопной системы с выхлопным соплом. Для этого в газовод 4 встроены форсунки 5, сообщенные с напорной магистралью окислителя 6, трубопроводом 7; газовод 4 и сопло 8 выполнены охлаждаемыми, для чего тракт охлаждения 10 сообщен трубопроводами 9, включающими дроссельную шайбу 11, с напорной магистралью горючего на входе и выходе тракта охлаждения камеры 1. 1 ил.

 

Изобретение относится к ракетной технике и может быть использовано в конструкциях жидкостных ракетных двигателей (ЖРД) с турбонасосной системой подачи топлива, выполненных по схеме без дожигания в камере сгорания.

Задача повышения удельного импульса тяги актуальна с времен создания первых ракетных двигателей, особенно - для жидкостных ракетных двигателей космического назначения, в которых невозможна из-за их относительно малой размерности по тяге (до ~2000 кгс) эффективная реализация схемы с дожиганием в камере, исключающей потери удельного импульса на привод турбонасосного агрегата. Величина этих потерь в зависимости от величин коэффициентов полезного действия насосов и турбины ТНА даже при максимально допустимой температуре рабочего тела турбины - газа с избытком горючего для двигателей на штатных компонентах топлива находится в интервале от 6 с до 10 с, а максимальное значение температуры газа - 950°С ограничено жаропрочностью современных материалов, применяемых в конструкциях турбин ЖРД; при этом температура отработанного в турбине газа существенно снижается за счет затрат его внутренней энергии на работу турбины. Таким образом температура выхлопного газа, поступающего с выхода турбины через газовый тракт в выхлопное сопло в случае высокоэффективной турбины, не превышает ~600°С, что существенно ограничивает удельный импульс выхлопного сопла, при котором потери удельного импульса двигателя на привод ТНА достигают вышеуказанных величин.

Уменьшение потерь удельного импульса, связанных с приводом ТНА в двигателе, выполненном по схеме без дожигания в камере, возможно с уменьшением расхода через турбину и, следовательно, через выхлопное сопло, что связано с уменьшением потребной мощности насосов ТНА за счет уменьшения их напоров или увеличения коэффициентов полезного действия насосов и турбины ТНА. Например, в двигателе разгонного блока «Фрегат», принятом за прототип изобретения, потребная мощность насоса окислителя снижена за счет введения в магистраль питания камеры горючим трубы Вентури, из горла которой отбирается задающее давление на стабилизатор соотношения расходов компонентов топлива в камеру, установленном в магистрали питания камеры, окислителем (Асюшкин В.А., Викуленков В.П. Итоги создания и начальных этапов эксплуатации межорбитальных космических буксиров типа «Фрегат»./ В.А. Асюшкин, Викуленков В.П. // Научно-технический журнал «ВЕСТНИК «НПО им. С.А. Лавочкина», 2014. - №1. - С. 3-9.). За счет этого из данной магистрали исключена уравнительная дроссельная шайба, что позволило уменьшить на величину перепада на ней, напор насоса окислителя, его мощность и, следовательно, расход рабочего тела через турбину. При этом снижаются потери удельного импульса на привод ТНА на ~1,2 с, что позволяет уменьшить заправку баков РБ «Фрегат», а значит увеличить его полезную нагрузку при выведении ее на геостационарную орбиту Земли на ~20 кг. По сравнению с другими ЖРД, выполненными по схеме без дожигания в камере, в прототипе обеспечиваются минимальные потери удельного импульса на привод ТНА, но и здесь они достигают величины ~6 с.

Изобретение направлено на уменьшение потерь удельного импульса на привод ТНА ЖРД, выполненного по схеме без дожигания в камере. Результат обеспечивается тем, что в ЖРД, включающем камеру, ТНА, газогенератор, вырабатывающий газ с избытком горючего, напорные магистрали компонентов топлива, выхлопную систему отработанного в турбине газа в виде газовода с соплом, в газовод на выходе турбины встроены форсунки, сообщенные с напорной магистралью окислителя, а газовод, начиная с уровня расположения форсунок до выхлопного сопла, и выхлопное сопло, выполнены охлаждаемыми компонентами топлива.

При таком исполнении в газоводе с охлаждаемыми стенками можно реализовать процесс дожигания относительно низкотемпературного выхлопного газа, обогащенного горючим, с окислителем при соотношениях их расходов, близком к камерным (коэффициент избытка окислителя α=0,6…0,8). При этом существенно повышается температура выхлопного газа и, следовательно, увеличивается удельный импульс выхлопного сопла, что, даже при существенном повышении расхода через турбину и выхлопную систему из-за повышения давления в ее газодинамическом тракте, и уменьшения перепада давления на турбине, уменьшает потери удельного импульса двигателя.

Так, расчетная оценка, проведенная применительно к двигателю на штатных компонентах топлива, выполненному по схеме без дожигания в камере, с тягой камеры 400 кгс при ее удельном импульсе 326,5 с выхлопным соплом, имеющим при коэффициенте тяги сверхзвуковой части Кп=1,6 тягу 8,5 кгс и удельный импульс - 170 с, за счет которого потери удельного импульса двигателя при расходе газа через сопло - 0,051 кг/с составляют 6,5 с, показывает, что впрыск через форсунки в газовод 0,0734 кг/с окислителя (при достаточном охлаждении газовода и сопла) обеспечивает процесс дожигания в газоводе при коэффициенте избытка окислителя α=0,65, при котором удельный импульс сопла с коэффициентом тяги Кп=1,6 возрастает до 282 с, тяга сопла увеличивается до 43,3 кгс (может быть использована для создания моментов стабилизации), а потери удельного импульса двигателя, связанные с приводом ТНА, уменьшаются до 4 с.

На рисунке представлена схема ЖРД, в состав которого входят камера 1, ТНА 2, газогенератор 3, охлаждаемый газовод 4, в который встроены форсунки 5, сообщенные с напорной магистралью окислителя 6 трубопроводом 7, охлаждаемое сопло 8, трубопроводы 9 подвода горючего к тракту охлаждения 10 газовода 4 и сопла 8 и отвода из него, дроссельная шайба 11, ограничивающая величину расхода окислителя.

При работе двигателя отработанный газ с избытком горючего из турбины ТНА 2 поступает в газовод 4, где смешивается с окислителем, поступающим в газовод через форсунки 5 по трубопроводу 7 из напорной магистрали 6. Содержащееся в отработанном газе горючее взаимодействуя с окислителем догорает, после чего температура газа в газоводе 4 существенно повышается; при этом обеспечивается охлаждение газовода 4 и выхлопного сопла 6 горючим, поступающим в тракт охлаждения 10 газовода 4 и сопла 8 с выхода насоса горючего ТНА 2 и отводящимся с выхода тракта охлаждения 10 на выход тракта охлаждения камеры 1 горючим. При этом расход горючего через тракт охлаждения 10 газовода 4 и выхлопного сопла 5 ограничен дроссельной шайбой 11. Высокотемпературные продукты сгорания рабочего тела турбины и окислителя истекают через сопло, создавая тягу сопла при высоком удельном импульсе, что позволяет существенно уменьшить потери удельного импульса двигателя, выполненного по схеме без дожигания в камере, связанные с выхлопом отработанного газа турбины ТНА.

Жидкостный ракетный двигатель, выполненный по схеме без дожигания в камере, включающий камеру, турбонасосный агрегат, газогенератор, вырабатывающий рабочее тело турбины - газ с избытком горючего, напорные магистрали компонентов топлива, выхлопную систему отработанного в турбине газа в виде газовода с выхлопным соплом, отличающийся тем, что в газовод на выходе турбины встроены форсунки, сообщенные с напорной магистралью окислителя, газовод, начиная с уровня расположения форсунок до выхлопного сопла, и выхлопное сопло, выполнены охлаждаемыми компонентами топлива.



 

Похожие патенты:

Предлагаемое изобретение относится к области ракетостроения, а именно к стартовым твердотопливным ускорителям ракеты-носителя. Стартовый твердотопливный ускоритель ракеты-носителя состоит из секций канальных зарядов с корпусами, выполненными в виде «коконов» из высокопрочного композиционного материала.

Изобретение относится к ракетной технике, а более конкретно, к устройству многокамерного жидкостного ракетного двигателя с дожиганием с управляемым вектором тяги. Многокамерный жидкостной ракетный двигатель с дожиганием генераторного газа с управляемым вектором тяги, содержащий газогенератор, турбонасосный агрегат, несколько неподвижно относительно рамы камер, расположенных в плоскостях стабилизации, соединенных газоводами с затурбинной полостью турбонасосного агрегата, источник инертного газа в виде баллона и сопла управления, соединенные с затурбинной полостью турбонасосного агрегата входами магистралей с установленными на них пуско-отсечными клапанами, согласно изобретению блоки сопел управления выполнены в виде пар коаксиально установленных сопел, причем те из них, которые соединены с затурбинной полостью турбонасосного агрегата, расположены в центральных частях, а периферийные сопла соединены с источником инертного газа с помощью магистралей с установленными на них пуско-отсечными клапанами.

Изобретение относится к жидкостным ракетным двигателям. Ракетный двигатель в сборе (5), включающий в себя бак (30B) для жидкого кислорода, двигатель (10), имеющий камеру сгорания (12), и «нагреватель» теплообменник (46) для превращения в пар жидкого кислорода.

Изобретение относится к области реактивных двигательных установок, а более конкретно к реактивной двигательной установке (1), в которой первый топливный контур (6) для подачи первого компонента топлива в основной двигатель (4) содержит отвод (13), расположенный ниже по потоку от насоса (8b) первого турбонасоса (8) и проходящий через первый регенеративный теплообменник (10) и турбину (8a) первого турбонасоса (8), а второй топливный контур (7) для подачи второго компонента топлива в основной двигатель (4) содержит отвод, расположенный ниже по потоку от насоса (9b) второго турбонасоса (9) и проходящий через второй регенеративный теплообменник (11) и турбину (9a) второго турбонасоса (9).

Изобретение относится к области двигательных установок на криогенном топливе, и в частности к криогенной двигательной установке (1), содержащей по меньшей мере один маршевый двигатель (6) многократного запуска, первый криогенный бак (2), соединенный с маршевым двигателем (6) для его питания первым компонентом топлива, первый газовый бак (4), по меньшей мере один осаждающий топливо двигатель (7, 8) и первый питающий контур (16) для питания первого газового бака (4).

Изобретение относится к ракетной технике и может быть использовано преимущественно в силовых блоках ракет-носителей (РН) для управления вектором тяги. .

Изобретение относится к ракетной технике и может быть использовано преимущественно в жидкостных ракетных двигателях. .

Изобретение относится к жидкостным ракетным двигателям. .

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя твердого топлива с изменяемым в полете значением суммарного импульса тяги. .

Изобретение относится к ракетной технике и может быть использовано при проектировании твердотопливных двигателей с обнулением или реверсом тяги, например противоштопорных ракет для испытаний самолетов. .

Изобретение относится к ракетно-космической технике и может быть использовано в конструкции жидкостного ракетного двигателя с турбонасосной системой подачи топлива, выполненного по схеме без дожигания, с радиационно-охлаждаемым насадком сопла камеры. Жидкостный ракетный двигатель, выполненный по схеме без дожигания, в состав которого входят турбонасосный агрегат (ТНА) 3, газогенератор 4, газовод 5 выхлопного тракта турбины ТНА 3, камера сгорания 1 с радиационно-охлаждаемым насадком (РОН) сопла 2, охлаждаемым выхлопным газом турбины, вход в тракт охлаждения которого сообщен через коллектор 6 с газоводом 5, а выход - с кольцевым сверхзвуковым соплом 8, выполненным вокруг РОН 2, в газовод 5 перед коллектором тракта охлаждения 6 РОН встроен центробежный сепаратор 9 в виде вихревой камеры с тангенциальным входом 10 и двумя выходами 11, 12, один из которых с отбором газа из центральной зоны вихревой камеры направлен по направлению тяги двигателя к коллектору 6 тракта охлаждения РОН, а другой при отборе с периферии вихревой камеры против направления тяги двигателя - к соплу сброса 13 отсепарированной твердой фазы.
Наверх