Резиновая смесь для изготовления нефтенабухающих изделий

Изобретение относится к промышленности РТИ для нефтегазовой отрасли и может быть использовано для производства нефтенабухающих пакеров или иных изделий для изоляции пластов путем увеличения объема при контакте с нефтесодержащей жидкостью или попутным нефтяным газом. Резиновая смесь на основе синтетического этилен-пропилен-диенового полимера (СКЭПТ), в состав которой дополнительно вводится полиэтилен с молекулярной массой Mn 800-1500 в количестве 5-30 масс.ч. на 100 масс.ч. каучука СКЭПТ. Резиновая смесь может включать в себя наполнители, мягчители, пластификаторы, противостарители (антиоксиданты, антиозонанты), вулканизующие системы, антискорчинги, антиреверсивные агенты и т.д. Техническим результатом является получение изделий, обладающих высокой степенью набухания в среде нефти, при этом имеющих относительно невысокую скорость набухания. 3 з.п. ф-лы, 1 ил., 3 табл.

 

Область техники

Изобретение относится к области резинотехнических изделий (РТИ) и РТИ для нефтедобывающей промышленности, в частности, и может быть использовано для производства нефтенабухающих пакеров, используемых при нефтедобыче и разработке скважин. Также данное изобретение может применяться и для создания иных изделий для изоляции пластов путем увеличения объема при контакте с нефтесодержащей жидкостью или попутным нефтяным газом. Кроме того, данное изобретение может применяться для ремонта систем транспортировки нефтепродуктов и соответствующего оборудования.

Уровень техники

Во многих областях применения разбухающие пакеры или заколонные пакеры могут служить более безопасным и простым средством разобщения пластов, чем цементирование и перфорирование. Разбухающие пакеры находят широкое применение и дают ощутимый положительный эффект в следующих операциях осуществляемых на месторождениях: разобщение пластов, отвод потока, вызов притока в скважину, скважины с компьютерной системой управления добычей, раздельная добыча из нескольких горизонтов, оптимизация использования цементирования, гравийная среда, гидроразрыв пласта, гидро- и пароизоляция зон в скважине, расширяющийся обратный клапан, заканчивание скважины и т.п.

Принцип действия разбухающего пакера и иных разбухающих изделий заключается в следующем. Когда разбухающий пакер или изделие, изготовленное из специального эластомера соприкасается со скважинными флюидами, происходит его разбухание, вследствие чего закупоривается затрубное пространство в любых открытых или обсаженных стволах. Отсутствие подвижных частей в конструкции позволяет производить установку без спускаемых через бурильные трубы инструментов, предназначенных для приведения конструкции в действие, и исключает возможность отказа. Эластомерные компаунды из которых изготавливаются разбухающие пакеры реагируют на скважинные флюиды, буровой раствор, жидкости для закачивания скважин и способны увеличиваться в объеме относительно объема, занимаемого при спуске в скважину. Использование эластомерных разбухающих пакеров в необсаженной скважине в дополнение к гравийной набивке позволяет изолировать секции боковых ответвлений от возможного проникновения воды.

Долгосрочная целостность скважины напрямую зависит от цементного покрытия трубопровода. Разрушение цементного покрытия может привести к потере производительности, снижению давления в скважине и раннему получению воды. Даже качественное цементное покрытие может быть повреждено при бурении и/или колебании давления и температуры в процессе добычи. Для его восстановления необходим дорогостоящий капитальный ремонт скважины. Разбухающие пакеры используются для уменьшения нагрузок в зоне контакта эластомер/ цемент, предотвращая, таким образом, разрушение цементного слоя. При образовании трещин в цементном слое затрубного пространства, эластомер разбухающего пакера вступает во взаимодействие с флюидами, от чего разбухает и закупоривает их путь движения. Устанавливая разбухающие пакеры на опасных участках, гарантируется долгосрочная кольцевая изоляция трубопровода.

В настоящее время ведется много разработок в данной области и существует множество запатентованных разработок.

Так, например, патентный источник WO 03008756, дата публикации 30.01.2003, описывает метод, при котором в затрубное пространство скважины помещается цилиндр из резины, который способен набухать при контакте с водой или нефтью, тем самым отсекая приток воды в продуктивные пласты.

Также из патентного документа WO 2014062391 А1, дата публикации 24.04.2014, известен набухающий пакер с контролируемой скоростью набухания который набухает благодаря, входящим в состав водоадсорбирующим добавкам, а именно сополимер тетрафторэтилена и пропилена, привитой сополимер крахмала и полиакрилатной кислоты, привитой сополимер поливинилового спирта и циклического кислотного ангидрида, сополимер изобутилена и малеинового ангидрида, сополимер винилацетата и акрилата, полимер оксида полиэтилена, привитой поли(этилен оксид) поли(акриловой кислоты), полимер типа карбоксиметилцеллюлозы, привитой сополимер крахмала и полиакрилонитрила, полиметакрилат, полиакриламид, сополимер акриламида и акриловой кислоты, поли(2-гидроксиэтил метакрилат), поли (2-гидроксипропил метакрилат), нерастворимый акриловый полимер, глинистый минерал с высокой способность к набуханию, бентонит натрия, бентонит натрия с монтмориллонитом в качестве основного компонента, бентонит кальция, их производные или их комбинации.

В патентном документе RU 2685350 C1, дата публикации 17.04.2019, описана водонефтенабухающая эластомерная композиция на основе бутадиен-α-метилстирольного каучука и содержащая водонабухающий реагент - натрийкарбоксиметилцеллюлозу в количестве 25,0 - 70,0, а также компоненты, которые являются привычными в технологии РТИ.

В патентном документе RU 2686202 С1, дата публикации 24.04.2019, описана резиновая смесь, которая содержит бутадиен-нитрильный каучук с содержанием НАК 17-20%, бутадиеновый каучук СКД, севилен 11808-340, серу, 2,2'-дибензтиазолдисульфид, гуанид Ф, цинковые белила, стеариновую кислоту, ацетонанил Н, технический углерод П 514, росил 175, тальк, тонкомолотый минеральный порошок из шунгита, канифоль, иглопробивное полотно «Оксипан», полиакриламид АК 639, реагент «Комета-Р» и натриевую соль полиакриловой кислоты ПАН-1.

Известен нефтенабухающий пакер, описанный в заявке CN 101824973 A, дата публикации 08.09.2010, изготовленный из резиновой смеси, содержащей бутадиен-стирольный каучук, акрилонитрил-бутадиеновый каучук, неопреновый каучук, технический углерод, оксид цинка, стеариновую кислоту, стабилизирующий агент, неорганический наполнитель, материал с высокой абсорбцией нефти.

Также существует резиновая смесь для уплотнительных элементов, описанная в патенте RU 2688512 С1, дата публикации 21.05.2019, которая содержит бутадиен-нитрильный каучук с содержанием нитрила акриловой кислоты 17-20%, изопреновый каучук СКИ-3, сэвилен 11808-340, N,N'-дитиодиморфолин, тиурам Д, сульфенамид Ц, цинковые белила, стеариновую кислоту, N-нитрозодифениламин, технический углерод Т 900, росил 175, тальк, мел, смолу нефтеполимерную «Сибпласт».

В патенте RU 2615520 C1, дата публикации 05.04.2017, описана нефтеабсорбирующая резиновая смесь на основе комбинации каучуков бутадиен-нитрильного марки БНКС-40АМН и синтетического изопренового марки СКИ-3, а также дополнительно содержащая вулканизующий агент - сера, ускорители вулканизации - каптакс и альтакс, активатор вулканизации - цинковые белила, противостаритель - нафтам-2, наполнители - технический углерод П 324, росил-175 и стеарат цинка, пластификаторы - норман-346 и канифоль.

Наиболее близким аналогом предлагаемого решения является композиционный нефтенабухающий материал, описанный в патенте RU 2625108 С1, опубликован 11.07.2017, характеризующийся тем, что включает бутадиен-нитрильный каучук с содержанием нитрила акриловой кислоты 17-20%, изопреновый каучук СКИ-3, серу, сульфенамид Ц, N,N'-дитиодиморфолин, тиурам Д, антискорчинг «ЗПР», оксид цинка, стеарат цинка, стеариновую кислоту, нафтам-2, технический углерод Н 220, таурит ТС-Д, смолу «Шинпласт», оксанол ЦС-100, дибутилфталат, масло индустриальное И-12А, транс-полинорборнен. Данное решение принято в качестве прототипа.

К недостаткам прототипа можно отнести: сложность технологии (необходимость предварительного «вымачивания» транс-полинорборнена и многокомпонентность состава), необходимость применения дополнительного оборудования, а также недостаточная степень набухания при довольно большой скорости.

Перечень чертежей

На фигуре 1 представлен график, показывающий зависимость изменения объема образца от времени выдерживания в среде.

Раскрытие изобретения

Целью предлагаемого решения является преодоление недостатков предшествующего уровня техники и разработка резиновой смеси, имеющей улучшенные свойства набухаемости и эффективно работающей в среде водонефтяной эмульсии, используемой, предпочтительно, для изготовления пакеров.

Технический результат изобретения заключается в разработке резиновой смеси, из которой изготавливают изделия, обладающие наиболее эффективным сочетанием свойств набухаемости, а именно, более медленным изменением объема в нефтесодержащих средах с одновременной увеличенной набухаемостью в таких средах. Также технология изготовления смеси является более простой, более быстрой и более дешевой ввиду того, что компонентный состав намного проще и доступней, а приготовление смеси требует соответственно меньше времени и операций.

Применительно к пакерам и иным разбухающим изделиям указанные улучшенные механические свойства положительно сказываются на безопасности при спуске оборудования, поскольку в нефтесодержащей среде пакер (или изделие) разбухает медленней. Кроме того, у предлагаемого решения значительно улучшены свойства набухания в нефтяной среде, что обеспечивает большую надежность и работоспособность пакера в данных условиях.

Технический результат достигается тем, что обеспечивают резиновую смесь на основе синтетического этилен-пропилен (диенового) полимера (далее по тексту СКЭПТ), при этом в состав дополнительно вводится полиэтилен с молекулярной массой (Mn) 800-1500 в количестве 5 - 30 масс.ч. на 100 масс.ч. каучука СКЭПТ. Подобные олигомеры полиэтилена могут представлять собой как жидкости, так и твердые, пластичные вещества при нормальных условиях.

Кроме вышеупомянутых компонентов, резиновая смесь может включать в себя ингредиенты, которые являются общеприменяемыми в резиновой промышленности: наполнители, мягчители, пластификаторы, диспергаторы, противостарители (антиоксиданты, антиозонанты), вулканизующие системы, антискорчинги, антиреверсивные агенты и т.д. Дополнительные ингредиенты подбираются исходя из специфических условий эксплуатации и изготовления изделия, и не влияют на сущность изобретения.

Выбор соотношения основных полимерных компонентов зависит от предполагаемых условий эксплуатации изделия из данной резиновой смеси и могут варьироваться в заданных пределах для достижения требуемых свойств.

Например, количество полиэтилена с молекулярной массой (Mn) 800-1500 может составлять 6, 7, 10, 15, 20, 25 масс.ч. на 100 масс.ч. СКЭПТ. Однако количественное соотношение компонента не ограничено только приведенными значениями и может включать любые промежуточные значения, входящие в первоначально указанные интервалы.

При этом выбор количественного содержания полиэтилена обусловлен достижением оптимальных физико-механических свойств изделий. Так, при содержании в концентрациях выше 30 масс.ч., неожиданно падает степень набухаемости изделия и прочностные характеристики резин, что неприемлемо в данном применении. При концентрации полиэтлена ниже минимально допустимого уровня (5 масс.ч.) эффект от его введения не является удовлетворительным и мало заметен.

При этом использование именно низкомолекулярного полиэтилена (с молекулярной массой 800-1500) было обусловлено тем, что что «классический» полимер полиэтилена крайне ограниченно набухает в среде нефтепродуктов при температурах ниже 80°С, причем это набухание настолько незначительно, что полиэтилен возможно использовать в качестве трубопроводов для перекачки нефти (см. Yu, K.; Morozov, E.; Ashraf, M.A.; Shankar, K. A review of the design and analysis of reinforced thermoplastic pipes for offshore applications. J. Reinf. Plast. Compos. 2017, 36, р. 1514-1530). Что касается полиэтилена с молекулярной массой менее 800, то его обработка сложна с технологической точки зрения, а порой невозможна, ввиду нестабильности свойств и агрегатного состояния. Как известно, свойства олигомеров сильно зависят от изменения количества повторяющихся звеньев в молекуле. С того момента, когда химические свойства перестают изменяться с увеличением длины цепочки, вещество называют полимером. Было экспериментально установлено, что полиэтилен с молекулярной массой 800-1500 при его использовании для получения резиновых изделий обладает наилучшим комплексом свойств набухаемости и обрабатываемости, а также стабильностью свойств в нефтесодержащих средах. Указанные полимеры по сути представляют собой полиэтиленовые воски.

Этилен-пропилен-диеновые каучуки (СКЭПТ) - это синтетические эластомеры. Представляют собой тройные сополимеры с 1-2 мол. % диена, например 2-этилиден-5-норборнена, дициклопентадиена. Растворяются во многих углеводородах и их хлорпроизводных. СКЭПТ получают сополимеризацией этилена с пропиленом и диеном на катализаторе Циглера-Натта в растворе или избытке полипропилена. Непластифицируются. Вулканизируются серой, фенол-формальдегидными смолами. СКЭПТ имеют превосходную атмосферо- и озоностойкость, высокую термо-, масло- и износостойкость, но также и высокую воздухопроницаемость, устойчивы в агрессивных средах, обладают хорошими диэлектрическими свойствами; предел прочности при растяжении 20-28 МПа, относительное удлинение 400-600%, эластичность по отскоку 40-52%.

Используемые в изобретении функциональные добавки, такие, как наполнители, мягчители, пластификаторы, противостарители (антиоксиданты, антиозонанты), диспергаторы, вулканизующие системы, антискорчинги, антиреверсивные агенты и т.д., являются хорошо знакомыми для специалистов и не требуют специального раскрытия. Подходящие для использования добавки раскрыты, в частности, в книге «Функциональные наполнители для пластмасс» под ред. Марино Ксантос, 2010 г.

Что касается механизма достижения технического результата, то этот вопрос до конца нами не исследован, однако повышенная набухаемость предложенной резиновой смеси скорее всего связана с природой низкомолекулярного полиэтилена. Данный эффект скорей всего связан с образованием пространственной структуры полимера в композите.

Также необходимо отметить, что изготовление нефтенабухающих пакеров не является единственной областью использования предложенной резиновой смеси и она может быть использована в любой области, требующей использование материалов, обладающих нефте- или маслонабухающими свойствами. В частности, данное изобретение может применяться для ремонта систем транспортировки нефтепродуктов и соответствующего оборудования

Осуществление изобретения

Для подтверждения возможности осуществления изобретения и достижения технического результата был проведен ряд исследований и экспериментов. Результаты экспериментов представлены ниже.

Резиновую смесь изготавливали на вальцах лабораторных ЛБ 320 150/150 (производства АО "Завода имени Красина") с общей загрузкой 1200 г., согласно приведенной ниже рецептуре.

В качестве компонентов резиновой смеси использовались синтетический каучук этилен-пропилен-норборненовый (Vistalon фирмы ExxonMobil), окись цинка (ГОСТ 208-84) - активатор ускорителей, сера (Polsinex фирмы Grupa Azoty) - вулканизующий агент, стеариновая кислота (ГОСТ 6484-84) - активатор ускорителей вулканизации, диспергатор наполнителей, мягчитель (пластификатор), органический пероксид - вулканизатор, технический углерод Н 220 - усиливающий наполнитель, масло индустриальное И-12А - пластификатор, низколекулярный полиэтилен Marcus M300 с молекулярной массой примерно 900-1100 (Marcus Oil & Chemical).

Соотношения компонентов предлагаемого решения и прототипа приведены в таблице 1:

Таблица 1
Составы резиновых смесей
Предлагаемое решение Прототип
Этилен-пропилен-диеновый каучук Vistalon 100,00 -
Бутадиен-нитрильный каучук с содержанием нитрила акриловой кислоты 17-20% - 50,00
Изопреновый каучук СКИ-3 - 50,00
Сера 0,20 0,50
Сульфенамид Ц - 2,00
N,N'-дитиоморфолин - 2,00
Тиурам Д - 2,00
Антискорчинг «ЗПР» 0,50
Окись цинка 5,00 3,00
Стеарат цинка - 5,00
Стеариновая кислота 5,00 2,00
Нафтам 2 - 2,00
Технический углерод Н 220 10,00 30,00
Таурит ТС-Д - 15,00
Смола «Шинпласт» - 5,00
Оксанол ЦС-100 - 2,00
Дибутилфталат - 3,00
Масло индустриальное И-12А 3,00 24,00
транс-полинорборнен - 6,00
Полиэтилен Marcus M300 25,00 -
Органический пероксид 7,00 -

Из изготовленных резиновых смесей на вулканизационном прессе LP 600kN (ф.Montech) свулканизованы образцы. После вылежки в 24 часа, образцы испытаны по ГОСТ ISO 1817-2016 «Резина и термоэластопласты. Определение стойкости к воздействию жидкостей». В качестве среды испытания применяется нефть с температурой 60-70°С.

Таблица 2
Результаты испытаний
Предлагаемое решение Прототип
Изменение объема через 12 ч, % 35 98
Изменение объема через 24 ч, % 55 122
Изменение объема через 48 ч, % 80 137
Изменение объема через 72 ч, % 101 152
Изменение объема через 96 ч, % 125 167
Изменение объема через 120 ч, % 142 172
Изменение объема через 144 ч, % 160 178
Изменение объема через 168 ч, % 189 182
Изменение объема через 336 ч, % 270 185
Изменение объема через 504 ч, % 320 186

Результаты испытаний графически изображены на фигуре 1.

Из изображения видно, что предлагаемое решение позволяет достигать больших степеней набухания, что прогнозирует возможность применения изобретения в условиях больших дифференциальных давлений.

Также было экспериментально исследовано влияние количества низкомолекулярного полиэтилена (с молекулярной массой 800-1500) на набухание композиции, т. к. известно, что «классический» полиэтилен крайне ограниченно набухает в среде нефтепродуктов при температурах ниже 80°С.

В качестве показателя для сравнения использованы значения «Изменение массы через 500 ч пребывания в тестовой жидкости». Условия испытаний аналогичны испытаниям фигуры 1. Рецептура эластомерного материала аналогична таблице 1, за исключением варьирования количества компонента «Полиэтилен Marcus M300»:

Результаты испытаний представлены в таблице 3

Таблица 3
Изменение массы образца через 500 ч пребывания в тестовой жидкости (нефть)
1 вариант 2 вариант 3 вариант 4 вариант 5 вариант 6 вариант
Содержание ПЭ, масс.ч. 0 10 20 30 45 60
Δm 500 ч, % 170 300 337 370 220 150

Как видно из данных таблицы, изменение массы непропорционально содержанию полиэтилена, а имеет экстремальный характер. Увеличение степени набухания при введении полиэтилена не может быть объяснено с точки зрения принципа аддитивности, т.к. как упомянуто выше, что полиэтилен не обладает достаточным набуханием. Как мы предполагаем, низкая молекулярная масса полиэтилена препятствует его кристаллизации, и он образует аморфные области в эластомерном материале, которые больше подвержены миграции нефтепродуктов внутрь материала. Уменьшение массы набухания при дальнейшем увеличении содержания полиэтилена можно связать с тем, что большая доля аморфных областей облегчает миграцию нефтепродуктов как в композит так и из композита.

Полиэтилен с еще меньшей молекулярной массой является слишком пластичным (практически жидким), он нестабилен, плохо поддается обработке и плохо формуется, в связи с чем использование таких олигомеров в данном изобретении не представляется возможным.

Данные испытания позволяют сделать вывод об эффективности использования низкомолекулярного полиэтилена (с молекулярной массой 800-1500) в количестве 5-30 масс.ч. совместно с каучуком СКЭПТ для получения нефтенабухающих изделий, обладающих высокой степенью набухания в среде нефти и масла, при этом имеющих относительно невысокую скорость набухания.

Резиновая смесь легко готовится, рецептура является относительно простой.

1. Резиновая смесь для изготовления нефтенабухающих резиновых изделий на основе синтетического этилен-пропилен-диенового каучука (СКЭПТ), содержащая вулканизующую систему и технологические добавки, отличающаяся тем, что в состав смеси дополнительно вводится полиэтилен с молекулярной массой Mn 800-1500 в количестве 5-30 масс.ч. на 100 масс.ч. каучука СКЭПТ.

2. Резиновая смесь по п. 1, отличающаяся тем, что резиновым изделием является пакер.

3. Резиновая смесь по п. 1 или 2, отличающаяся тем, что используют полиэтилен Marcus M300 с молекулярной массой Mn примерно 900-1100.

4. Резиновая смесь по одному из пп. 1-3, отличающаяся тем, что в качестве технологических добавок используют наполнители, мягчители, пластификаторы, диспергаторы, противостарители - антиоксиданты, антиозонанты, антискорчинги, антиреверсивные агенты и красители.



 

Похожие патенты:

Группа изобретений включает модифицированный полимер и каучуковую композицию. Модифицированный полимер на основе сопряженного диена удовлетворяет следующим условиям: i) температура стеклования: от - 80°С до - 50°С; ii) вязкость по Муни согласно измерению в условиях документа ASTM D1646: от 70 до 100; iii) уровень содержания 1,2-винильных связей по отношению к совокупной массе полимера: от 5,0% до 30,0% (масс.); iv) молекулярно-массовое распределение (КП; ММР): от 1,5 до 3,5; v) коэффициент релаксации по Муни при 110°С: от 0,05 до 0,7.

Изобретение относится к биссилиламиносилил-функционализованным сопряженным диенам и их использованию при производстве каучуков. Предложен функционализованный сопряженный диен, выбираемый из группы соединений, описывающихся формулами (Ia), (Ib), (Ic), где R необязателен и при наличии представляет собой линейную или разветвленную, насыщенную или ненасыщенную гидрокарбиленовую группу, R1 выбран из одинарной связи, группы SiR7R8 и гидрокарбиленовой группы, необязательно содержащей одну или более групп SiR7R8, R2, R3, R4, R5, R7 и R8 идентичные или различные и представляют собой алкильную группу, содержащую от 1 до 10 атомов углерода.

Изобретение относится к резинотехническому производству, в частности к морозостойким резиновым смесям для изготовления уплотнительных элементов пакерно-якорного оборудования. Предложена морозостойкая резиновая смесь, включающая комбинацию бутадиен-нитрильных каучуков БНКС-28АМН и БНКС-18АМН, перкадокс 14-40В, белила цинковые, стеариновую кислоту, технический углерод П-803 и диоксид кремния БС-120, антиоксидант IPPD, ацетонанил Н, дибутилсебацинат, отличающаяся тем, что дополнительно содержит хлорированный термопластичный полиолефин и свободный от нитрозамина тиадиазольный ускорител при следующием содержании компонентов, мас.ч.: бутадиен-нитрильный каучук БНКС-28АМН 60, бутадиен-нитрильный каучук БНКС-18АМН 20-25, хлорированный термопластичный полиолефин 15-20, перкадокс 14-40В 5, свободный от нитрозамина тиадиазольный ускоритель 1, белила цинковые 5, стеариновая кислота 3, антиоксидант IPPD 3, ацетонанил Н 2, технический углерод П-803 120, диоксид кремния БС-120 10-15, дибутилсебацинат 15-20.

Изобретение относится к огнестойкой резиновой смеси и может быть использовано в автомобильной, нефтяной и резинотехнической промышленности. Технический результат достигается тем, что огнестойкая резиновая смесь, содержащая синтетический каучук изопреновый, серу, оксид цинка, стеариновую кислоту и технический углерод, при этом дополнительно содержит альтакс, дифенилгуанидин и модифицирующую добавку - фосфоразотсодержащий олигомер, полученный путем взаимодействия диметилфосфита, эпоксидной смолы ЭД-20 и анилина, взятых в массовом отношении 1:2,5:0,75, при следующем соотношении компонентов, мас.ч.: синтетический каучук изопреновый 100,0, сера 1,0, альтакс 1,0, оксид цинка 5,0, стеариновая кислота 1,0, дифенилгуанидин 3,0, технический углерод П-324 50,0, фосфоразотсодержащий олигомер 3,0-7,0.

Изобретение относится к резиновой промышленности, в частности к производству резиновых смесей для изготовления изделий, эксплуатируемых в условиях воздействия морской воды. Резиновая смесь содержит бутадиен-нитрильный каучук с массовой долей связанного нитрила акриловой кислоты в пределах от 36 до 40%, бутилкаучук БК-1675, бутадиен-метилстирольный каучук с содержанием α-метилстирола 22-25 мас.%, полиизобутилен высокомолекулярный П-200, серу, N,N'-дитиодиморфолин, N-циклогексил-2-бензтиазолилсульфенамид, оксид цинка, стеариновую кислоту, гепсол ХПК, N-изопропил-N'-фенил-n-фенилендиамин, ацетонанил Н, технический углерод N 220, технический углерод П 514, тонкомолотый минеральный порошок из шунгита, канифоль, фактис темный, N-нитрозодифениламин, масло индустриальное И-12А и транс-полинорборнен.

Изобретение относится к композиции каучука, проявляющей улучшенную обрабатываемость/жесткость, причем указанная композиция основана на по меньшей мере диеновом эластомере, усиливающем наполнителе, сшивающей системе, эпоксидной смоле в количестве между 1 и 30 массовыми частями на сто массовых частей эластомера, мас.ч., и особом аминосодержащем отвердителе в количестве между 1 и 15 мас.ч., содержащем, в частности, по меньшей мере две первичные функциональные аминогруппы, расположенные по меньшей мере на одном шестичленном ароматическом кольце и по меньшей мере два радикала Ri, которые являются одинаковыми или различными, выбранные из группы, состоящей из линейных или разветвленных C1-C6 алкильных радикалов, галогенов и простых эфиров, третичных аминов, тиоэфиров, кетонов, сложных эфиров и амидов, замещенных линейными или разветвленными C1-C6 алкильными радикалами, причем указанное кольцо не содержит атом водорода, расположенный в орто-положении относительно первичных функциональных аминогрупп.

Изобретение относится к нешипованной шине. Предложена нешипованная шина, имеющая протектор, состоящий из резиновой смеси для протектора, содержащей от 5 до 20 мас.ч.
Изобретение относится к области создания биоразлагаемых композиционных материалов, предназначенных для изготовления изоляционных оболочек металлических жил проводов, используемых в кабельной промышленности. Описан биоразлагаемый материал на основе термопластичного крахмала, отличающийся тем, что дополнительно содержит смесь поливинилхлорида суспензионного, полимолочной кислоты и полигидроксибутирата, органомодифицированную мочевиной глину, смесь карбоната кальция, бората цинка, гидроксида магния, кальций-цинковый стабилизатор и тетрафторборат аммония при следующем соотношении, мас.ч.: смесь поливинилхлорида суспензионного, полимолочной кислоты и полигидроксибутирата 100, термопластичный крахмал 15-18, органомодифицированная мочевиной глина 2-3, смесь карбоната кальция, бората цинка, гидроксида магния 12, кальций-цинковый стабилизатор 2-4, тетрафторборат аммония 2-4, причем указанная матричная смесь, включающая в себя поливинилхлорид суспензионный, полимолочную кислоту и полигидроксибутират, подвергается смешению в высокогомогенизирующем смесителе при 35°С, при соотношениях мас.ч.

Настоящее изобретение относится к резиновой смеси. Данная смесь используется для изготовления подрельсовых прокладок - амортизаторов рельсовых скреплений.

Изобретение относится к способу получения бутилкаучука с функциональными группами аллилового спирта, включающий контакт эпоксидированного бутилкаучука с мета-хлорбензойной кислотой в отсутствии растворителя при температуре от 95°С до 200°С.Изобретение обеспечивают эффективный по стоимости способ производства для бутилкаучука с полярными функциональными группами, особенно для бутилкаучука, содержащего функциональные группы аллилового спирта.

Изобретение относится к резиновой промышленности, в частности к созданию резиновой смеси для изготовления резиновых манжет пакерных устройств, разбухающих в буровом растворе «Полиэмульсан». Резиновая смесь для изготовления резиновых манжет, разбухающих в буровом растворе «Полиэмульсан», на основе комбинации натурального каучука и бутадиеннитрильного каучука БНКС-18 содержит целевые добавки, в том числе асбест хризотиловый, диспергированный в расплаве ε-капролактама с производными п-фенилендиамина, дисперсия которого, в свою очередь, диспергирована в двойном этиленпропиленовом или тройном этиленпропилендиеновом каучуках, а в качестве вулканизующего агента - серу, при этом сера, находящаяся в пасте с дисперсионной средой, представленной эвтектическим расплавом ε-капролактама и малеиновой кислотой, заключена в капсулу с оболочкой из коллоидной кремнекислоты при следующем соотношении компонентов серной капсулы, % масс.: сера -от 22,50 до 27,50, коллоидная кремнекислота (БС-120) - 50,00, ε-капролактам - от 13,50 до 16,5, малеиновая кислота - от 9,00 до 11,00, причем серная капсула при следующем содержании основных компонентов смеси, мас.ч.: каучук БНКС-18 - 50,00, каучук натуральный - 50,00, дисперсия этиленпропиленового или этиленпропилендиенового каучука с диспергированным асбестом хризотиловым - 130,00, серная капсула - от 3,64 до 4,44.
Наверх