Прицел-прибор наведения

Изобретение относится к оптико-механическим приборам, в частности к прицелам-приборам наведения (ППН). Прицел-прибор наведения состоит из корпуса, в котором установлены электрически связанные между собой блоки с оптическими каналами, закрепленные на общей стойке, размещенной внутри корпуса. Корпус выполнен составным из верхней и нижней части, соединенных крепежными элементами. Каждый блок с оптическими каналами размещен в отдельном модуле, закрепленном на стойке. Стойка скреплена с верхней частью корпуса шарнирным соединением в виде полупетель, закрепленных на внутренней поверхности верхней части корпуса и верхней части стойки. В нижней части корпуса выполнено окно, в котором с зазором размещен вкладыш с выполненным в нем пазом, взаимодействующий с выступом, выполненным в нижней части стойки. С торцевой части вкладыша с обеих сторон установлены винты перпендикулярно выступу на нижней части стойки. Достигается повышение надежности и качества работы ППН при эксплуатации в широком диапазоне температур окружающей среды, за счет снижения влияния температурных деформаций на положение оптических осей каналов системы от корпуса ППН. 2 з.п. ф-лы, 9 ил.

 

Изобретение относится к оптико-механическим приборам, в частности к прицелам-приборам наведения (ППН) управляемого вооружения в составе противотанкового комплекса, предназначенным для формирования монохроматического инфракрасного излучения на инжекционных полупроводниковых лазерах с малой расходимостью поля управления ракетой.

Кроме того, с помощью ППН осуществляется поиск, обнаружение и опознавание цели в любое время суток.

ППН формирует кодированное лазерное излучение (по курсу и тангажу), циклограмму пуска ракеты.

Известен наиболее близкий по технической сущности ППН, патент РФ №2108531 F41G 7/00; 11/11 от 10.04.1998 г. взятый нами за прототип, который является составной частью наземной аппаратуры управления комплекса управляемого вооружения и предназначен для управления ракетой, выстреливаемой из пушки или транспортно-пускового контейнера.

Данный ППН состоящий из корпуса, в котором установлены электрически связанные между собой блоки с оптическими каналами закрепленные внутри корпуса.

Недостатком известного ППН является нарушение при температурном воздействии одного из основных параметров - параллельности оптических каналов. Это происходит в результате деформации стойки, на которой закреплены оптические блоки. Деформация происходит в результате того, что объем материала корпуса ППН больше объема пластины-стойки. Поэтому при изменении температуры окружающей среды, изменение температуры корпуса и пластины-стойки не совпадают по времени. А при существующем жестком креплении в направлении оптических каналов пластины-стойки на корпусе ППН, силы температурного расширения (сжатия) корпуса приводят к деформации пластины-стойки и, соответственно, к рассогласованию направления оптических осей каналов.

Также недостатком данного ППН является то, что для обеспечения надежности и качества оптической системы при всех условиях эксплуатации, включая температурные колебания и ударные воздействия необходимо проводить юстировку оптических каналов.

Кроме того, при эксплуатации невозможно произвести смену частей с возможностью удобной и легкой их замены, укладку и выемку, как оптической системы, так и электрических устройств, блоков.

Все эти недостатки приводят к снижению надежности и качества ППН и его эксплуатационных характеристик, нарушается взаимозаменяемость блоков системы, так как требуется время на их юстировку с трудоемкими операциями их монтажа и демонтажа.

Задачей изобретения является повышение надежности и качества ППН при эксплуатации в широком диапазоне температур окружающей среды за счет снижения влияния температурных деформаций на положение оптических осей системы от корпуса ППН.

Задача достигается тем, что в ППН, состоящем из корпуса в котором установлены электрически соединенные между собой блоки с оптическими каналами закрепленные на общей стойке, размещенной внутри корпуса, корпус выполнен составным, из верхней и нижней части, соединенных крепежным элементом, каждый блок с оптическими каналами размещен в отдельном модуле, закрепленном на стойке, стойка скреплена с верхней частью корпуса шарнирным соединением, в виде полупетель, закрепленных на внутренней поверхности верхней части корпуса и верхней части стойки соответственно, при этом в нижней части корпуса выполнено окно, в котором с зазором размещен вкладыш с выполненным в нем пазом, взаимодействующий с выступом, выполненным в нижней части стойки, а с торцевой части вкладыша с обеих сторон установлены винты, перпендикулярно выступу на нижней части стойки. Полупетли между собой креплены осью, которая установлена в их отверстия, и закреплены на внутренней поверхности верхней части корпуса и верхней части стойки с помощью конических винтов.

Предложенный ППН позволяет повысить надежность и качество его работы при эксплуатации в широком диапазоне температур окружающей среды, за счет снижения влияния температурных деформаций на положение оптических осей каналов системы от корпуса ППН.

Изобретение поясняется фиг.1-9.

На фиг. 1 изображен общий вид ППН, который имеет: 1, 2, 3 - модули, выполненные в виде отдельных герметичных модулей; 4 - верхняя часть корпуса с крепежными элементами 7 полупетель, 5 - нижняя часть корпуса с установленным вкладышем 6, 8 - крепежные элементы, соединяющие верхнюю и нижнюю часть корпуса 4 и 5 соответственно.

На фиг. 2 (вид А) изображены оптические каналы ППН, где: 9, 10, 11, 12, 13 - оптические оси каналов ППН, 14 - стойка на которой закреплены блоки с оптическими каналами, а стойка 14 скреплена с верхней частью корпуса 4 петлевым соединением. Петлевое соединение выполнено в виде двух полупетель 15-16, соединенных осью 17. Снизу стойка имеет выступ 18 установленный в паз вкладыша 6 и зафиксированный соосными винтами 19 вывинчивание (ввинчивание) которых позволяет произвести дополнительную юстировку каналов без разбора ППН.

На фиг. 3 (сечение Б-Б) показана стойка 14 закрепленная через верхнюю часть корпуса шарнирным соединением 15-16 соединенное осью 17 и зафиксированные через верхнюю часть корпуса 4 винтами с конической рабочей поверхностью 20-21.

На фиг. 4 и 5 (сечение В-В и сечение Г-Г) показана фиксация полупетли 16 винтами с конической поверхностью 20 и 21 соответственно.

На фиг. 6 и 7 показано выполнение отверстий под винты с конической рабочей поверхностью 20-21 в полупетле 16 в форме конуса 22 и в полупетле 16 в форме конической поверхности 23. Взаимодействие конических поверхностей винтов 20-21 и полупетель 15-16 соответственно дают возможность исключить дрожание прицельной марки в процессе прицеливания и автосопровождения цели.

На фиг. 8 показан вкладыш 6 под выступ 18 стойки 14.

На фиг. 9 (вид Д) изображено положение винтов 20-21 в верхней части корпуса 4, крепежные элементы 7, которые фиксируют полупетли 14.

Данное техническое решение позволяет создать комплексную лазерную систему вооружения, выполненной в виде отдельных герметичных блоков 1,2,3 с оптическими каналами, установленных с обеих сторон на стойке 14, которую закрепляют в корпусе ППН состоящего из двух частей: верхней 4 и нижней 5, соединенных между собой крепежными элементами 8.

Стойку 14 закрепляют петлевыми шарнирами, выполненными в виде полупетель 15-16, соединенных осями 17, закрепленных на стойке 14 и на верхней части внутри корпуса 4, а внизу стойку 14 с выступом 18 устанавливают в паз вкладыша 6, в котором перпендикулярно пазу и выступу устанавливают резьбовые винты 19 с двух сторон выступа 18, при этом вкладыш 6 установлен снаружи нижней части корпуса 5. Оси 17 в отверстиях полупетель 15 образуют беззазорное соединение, а в отверстиях полупетель 16 закрепленных на стойке 14 установлены с минимальным гарантированным зазором, причем полупетли 16 фиксируются винтами 20-21 с коническими рабочими концами, которые установлены в верхней части корпуса 4 и упираются коническим концом в отверстия, выполненные в полупетлях 16, закрепленных на стойке 14, причем в первой полупетле 16 со стороны объективов отверстие имеет коническую форму 22, а отверстие в задней полупетле 14 имеет форму паза конического сечения 23, при этом ослабляя винты 20, 21 и вывинчивая (ввинчивая) соосные винты 19 в отверстиях вкладыша 6, а также за счет минимального зазора в полупетлях 16 проводят юстировку каналов без разбора ППН, затем контрят винты 19 в отверстиях вкладыша 6, а также ввинчивают и контрят винты 20-21.

Предложенное техническое решение обеспечивает исключение дрожания прицельных марок каналов в процессе прицеливания и автосопровождения цели, в случае, когда прицел установлен на работающем автомобильном шасси, что расширяет функциональные возможности ППН в процессе эксплуатации, позволяет значительно уменьшить влияние деформации за счет температурных и механических воздействий на положение оптических осей каналов и энергетические характеристики прибора, позволяет произвести дополнительную юстировку каналов без разбора ППН после проведения испытаний на воздействия эксплуатационных температур, а также повысить технологичность сборки прицел-прибора наведения.

Таким образом, предложенное техническое решение позволяет повысить энергетический потенциал системы, упростить конфигурацию, улучшить технологичность и имеет явное преимущество перед известными устройствами формирования оптического поля управления для управляемых летательных аппаратов по своим эксплуатационным, так и по конструктивно-технологическим показателям.

1. Прицел-прибор наведения, состоящий из корпуса, в котором установлены электрически связанные между собой блоки с оптическими каналами, закрепленные на общей стойке, размещенной внутри корпуса, отличающийся тем, что корпус выполнен составным из верхней и нижней части, соединенных крепежными элементами, каждый блок с оптическими каналами размещен в отдельном модуле, закрепленном на стойке, стойка скреплена с верхней частью корпуса шарнирным соединением в виде полупетель, закрепленных на внутренней поверхности верхней части корпуса и верхней части стойки соответственно, при этом в нижней части корпуса выполнено окно, в котором с зазором размещен вкладыш с выполненным в нем пазом, взаимодействующий с выступом, выполненным в нижней части стойки, а с торцевой части вкладыша с обеих сторон установлены винты перпендикулярно выступу на нижней части стойки.

2. Прицел-прибор наведения по п. 1, отличающийся тем, что полупетли закреплены на внутренней поверхности части корпуса и верхней части стойки с помощью конических винтов.

3. Прицел-прибор наведения по п. 1, отличающийся тем, что полупетли между собой скреплены осью, которая установлена в их отверстиях.



 

Похожие патенты:

Изобретение относится к области авиационной техники и касается оптико-электронной многоканальной головки самонаведения (ГСН). Головка самонаведения содержит корпус, внутри которого установлены телевизионный (ТВ) и тепловизионный (ТПВ) каналы с матричными фотоприемными устройствами и объективами, модуль электронной обработки изображений и координатор в виде лазерного индикатора-координатора с объективом.

Изобретение относится к области военной техники и касается способа повышения помехозащищенности управляемых боеприпасов с лазерной системой наведения. Способ включает в себя использование пространственно-разнесенных лазерного целеуказателя-дальномера и самонаводящегося боеприпаса, подсветку лазерным излучением, определение координат цели лазерным целеуказателем-дальномером и наведение самонаводящегося боеприпаса по отраженному от цели лазерному излучению лазерного целеуказателя-дальномера.

Изобретение относится к способам дистанционного управления беспилотными летательными аппаратами, выполняющими перелеты на большие дальности - до нескольких тысяч километров. Способ дистанционной коррекции полетного задания беспилотного летательного аппарата включает подготовку полетных заданий и организацию контура дистанционного управления для изменения участков траектории полета беспилотного летательного аппарата.

Способ наведения на цель реактивной системы, при котором используют ЭВМ, устройства наведения, беспилотный летательный аппарат, (БЛА) пульт управления реактивной системой и беспилотным летательным аппаратом, радиостанцию для связи реактивной системы с БЛА, фотокамеру на БЛА. Для повышения точности попадания осуществляют пристрелочный выстрел реактивным снарядом, вес и размеры которого соответствуют боевому, фиксируют координаты дымового облака.

Изобретение относится к способам целеуказания по направлению системе наведения управляемого объекта и может быть использовано при создании новых и модернизации существующих способов и устройств целеуказания по направлению в системах наведения управляемых объектов - как дистанционно пилотируемых (беспилотных) летательных аппаратов, так и в пилотируемой авиации.

Изобретение относится к способу сопровождения беспилотным летательным аппаратом (БПЛА) наземного объекта, перемещающемуся по некоторому маршруту. Для сопровождения наземного объекта на нем размещают оптический маркер, а на борту БПЛА устанавливают видеокамеру.

Изобретение относится к способу управления беспилотным летательным аппаратом (БПЛА). Для управления БПЛА размещают оптический маркер на наземном материальном объекте.

Изобретение относится к области военной техники и может быть использовано при проведении полигонных испытаний как существующих, так и перспективных самоприцеливающихся боевых элементов (СПБЭ), и позволяет проводить оценку функционирования перспективного СПБЭ по движущимся имитаторам цели. Комплекс функционально состоит из испытательной площадки, представляющей собой стационарную площадку, на которой имеется семь параллельных узкоколейных железнодорожных путей (направлений), с первого по седьмой пути предназначены для имитации движения объектов бронированной техники при переходе в наступление, четвертый путь дополнительно позволяет имитировать движение колонны на марше, в качестве движущегося имитатора цели выступает ж/д платформа, на которую установлен металлический лист толщиной 2-3 мм с размером 3000×6000 м и тепловой имитатор цели, движение ж/д платформ осуществляется с помощью радиоуправляемого электродвигателя.

Изобретение относится к области получения изображений и касается инструмента получения изображений для контроля целеуказания. Инструмент содержит объектив, матричный датчик изображения и фильтр.

Изобретение относится к области радиолокации. Способ определения угла между оптической осью антенного устройства и продольной осью РЛС зенитного комплекса заключается в наведении линии визирования лазерного визира, закрепленного на базовом шасси РЛС, вдоль его продольной оси, проецировании горизонтальной линии визирования визира на плоскость, жестко связанную с вращающейся частью антенного устройства и перпендикулярную оптической оси антенного устройства, наведении горизонтальной лини визирования поворотом визира до отображения ее на всей длине плоскости.

Изобретение относится к наземным образцам вооружения и военной техники, имеющим воздушную систему и систему гидропневмоочистки приборов наблюдения. Сущность изобретения заключается в том, что предложена система гидропневмоочистки прибора наблюдения механика-водителя, содержащая баллоны со сжатым воздухом, дозатор жидкости, бак для жидкости, трубопроводы, заливную горловину, клапан с краном, рычаг включения системы, распылитель дополнительно снабжается датчиком температуры воздуха, установленным у входного окна прибора наблюдения механика-водителя, датчиком положения рукоятки крана переключения режима очистки с приводом рукоятки, приводом рычага включения системы гидропневмоочистки, механическим очистителем защитного стекла прибора наблюдения механика-водителя с приводом, блоком управления.
Наверх