Устройство для пространственной стабилизации дуги



Устройство для пространственной стабилизации дуги
Устройство для пространственной стабилизации дуги
H05H1/24 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2769869:

Федеральное государственное бюджетное учреждение науки Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук (ИФТТ РАН) (RU)

Изобретение относится к области электрометаллургии и может быть использовано для прецизионной сварки, наплавки и изготовления деталей способом 3D-печати из порошков тугоплавких металлов в гарнисаже, в изолированной атмосфере. Технический результат - повышение точности стабилизации пространственного положения дуги. Устройство для пространственной стабилизации дуги включает неплавящийся катод и анод, между катодом и анодом установлена пластина из диэлектрического материала с высокой температурой плавления с отверстием для электродугового разряда. Величина зазора в плоском слое между анодом и указанной пластиной обеспечивает формирование тороидального вихря, локализующего дуговой разряд и анодное пятно на оси катода. 2 ил.

 

Изобретение относится к области электрометаллургии и может быть использовано для прецизионной сварки, наплавки и изготовления деталей способом 3D-печати.

Возмущающее действие на плазму дугового разряда оказывают силы магнито- и газодинамической природы.

Из уровня техники известны устройства с вихревой и магнитной стабилизацией дугового разряда [Плазмотроны: конструкции, характеристики, расчет./ А.С. Коротеев, В.М. Миронов, Ю.С. Свирчук. - М.: Машиностроение, 1993. - 296 с] - аналог. Рассмотренные схемы электротехнологических установок с параллельным и закрученным током газа в присутствии индуцированного магнитного поля эффективно используются на протяжении многих лет при резке и наплавке металла. Однако высокие скорости течения струи газа (вплоть до сверхзвуковых скоростей) делают предложенные устройства не пригодными для пространственной стабилизации дуги при изготовлении деталей способом 3D-печати из порошков тугоплавких металлов в гарнисаже, в изолированной атмосфере.

Из уровня техники известен электрод для дуговой плавки металлов [Борисенко Д.Н., Колесников Н.Н. // Патент РФ №2682553 от 19.03.2019 Бюл. №8.] - прототип. Неплавящийся электрод содержит цилиндрический корпус и снабжен соленоидом, выполненным из графита в виде однорядной спирали. Соленоид расположен коаксиально корпусу и включен последовательно в электрическую цепь дугового разряда. Технический результат заключается в формировании соленоидом магнитного поля вокруг дугового канала, которое сжимает плазму в радиальном направлении и стабилизирует ее течение в аксиальном направлении, позволяя вести процесс сварки в контролируемых условиях. Недостатком предложенного устройства является невозможность его работы при токах выше 10 А, вызванная собственным пинч-эффектом, усиленным магнитным полем соленоида.

Задачей настоящего изобретения является разработка устройства для пространственной стабилизации дуги, пригодного для применения в прецизионной сварке, наплавке и изготовления деталей способом 3D-печати из порошков тугоплавких металлов в гарнисаже, в изолированной атмосфере.

Поставленная задача решается с помощью кинетического дросселя, выполненного из пластины диэлектрического материала с высокой температурой плавления с отверстием для электродугового разряда.

На фиг. 1 представлена схема устройства для пространственной стабилизации дуги в составе сварочной головки, где цифрами обозначены: (1) - катод из вольфрамового стержня круглого сечения (2) - цанговый зажим; (3) - кинетический дроссель; (4) - тороидальный вихрь; (5) - столб дугового разряда; (6) - анод (деталь); (7) - держатель; (8) - графитовая пластина; (9) - керамический кронштейн; (10) - фланец; (11) - шток для перемещения сварочной головки вдоль поверхности детали. Анод (6) располагается на вращающемся столе с возможностью перемещения по вертикали (на фиг. 1 не показано). На фиг. 2 представлена фотография кинетического дросселя (3), выполненного из пластины сапфира с отверстием для электродугового разряда, закрепленного соосно с катодом (1).

Устройство работает следующим образом.

В изолированной атмосфере возмущающее действие на столб дугового разряда (5) оказывают силы газодинамической природы, представляющие собой при наличии больших градиентов температуры мощные конвективные потоки газа от анодного пятна в окружающее пространство. В предлагаемом устройстве управляющим параметром самоорганизации этих газовых потоков служит зазор между анодом (6) и кинетическим дросселем (3). При определенной величине зазора в плоском слое между анодом (6) и кинетическим дросселем (3) возникает критический переход с формированием тороидального вихря (4), локализующего дуговой разряд (5) и анодное пятно на оси катода (1).

Пример. Рабочий ток дуги 100 А, давление гелия 1 атм. Формирование тороидального вихря наблюдается при величине зазора между анодом и кинетическим дросселем 10 мм. Наблюдается стабилизация пространственного положения дуги, выражающаяся в том, что среднее арифметическое из абсолютных значений отклонений профиля в пределах базовой длины шва в 4 раз меньше, чем в отсутствие кинетического дросселя.

Таким образом, предложенное устройство для пространственной стабилизации дуги является перспективным для прецизионной сварки, наплавки и изготовления деталей способом 3D-печати из порошков тугоплавких металлов в гарнисаже, в изолированной атмосфере.

Устройство для пространственной стабилизации дуги, включающее неплавящийся катод и анод, отличающееся тем, что между катодом и анодом установлена пластина из диэлектрического материала с высокой температурой плавления с отверстием для электродугового разряда, причем величина зазора в плоском слое между анодом и указанной пластиной обеспечивает формирование тороидального вихря.



 

Похожие патенты:

Изобретение относится к области плазменной техники. Обойма расходного картриджа для плазменной горелки с жидкостным охлаждением включает в себя изолирующий корпус, выполненный с возможностью его размещения между наконечником горелки и концевой частью картриджа.

Группа изобретений относится к пищевой промышленности, а именно к способу и устройству для обработки охлажденного мяса низкотемпературной газовой плазмой атмосферного давления (НПАД). Устройство включает контейнер с решеткой для продукта, имеющий плазмоотводящую и плазмоподводящую трубки.

Изобретение относится к области материаловедения, в частности к восстановлению изношенных металлических деталей. Устройство напыления металла на поверхность детали состоит из электрода-катода, выполненного с возможностью подачи на него отрицательного потенциала постоянного тока, распылителя металлопорошка с возможностью подачи воздушным потоком металлопорошка в электрическую дугу между катодом и восстанавливаемой деталью, выполненной с возможностью подачи на нее положительного потенциала, в качестве анода, соленоида и электромагнитного индуктора.

Изобретение относится к области электротехники, в частности к высоковольтным изоляторам. Технический результат - обеспечение защиты стеклянной подложки керамическим слоем от воздействия ионизированной плазмы.

Изобретение относится к космической технике, в частности к электроракетным двигательным установкам с электрическим ракетным двигателем (ЭРД) с безэлектродным источником плазмы и ускорительной ступенью. Двунаправленный волновой плазменный двигатель для космического аппарата содержит газоразрядную камеру, определяющую ось сил тяги, антенну, модуль ВЧ-генератора, имеющий электрическую связь с антенной, магнитные системы, причем газоразрядная камера выполнена открытой во внешнюю атмосферу с двух противоположных торцов с возможностью формирования двух векторов тяги, противоположных друг другу по направлению и имеющих общую ось, являющуюся осью газоразрядной камеры, причем антенна расположена на внешней стороне газоразрядной камеры и с внешней своей стороны окружена кольцом из диэлектрического материала, при этом на каждом из противоположных концов газоразрядной камеры расположено по одной магнитной системе.

Изобретение относится к космической технике, в частности к электроракетным двигательным установкам с электрическим ракетным двигателем (ЭРД). Гибридный волновой плазменный двигатель для низкоорбитального космического аппарата содержит газоразрядную камеру, выполненную открытой во внешнюю атмосферу с двух противоположных торцов с возможностью формирования двух векторов тяги, противоположных друг другу по направлению, антенну, модуль ВЧ-генератора, имеющий электрическую связь с антенной, магнитные системы, расположенные по одной на каждом из противоположных концов газоразрядной камеры, имеющие линии электрической связи с источниками питания магнитных систем, систему хранения и подачи рабочего тела, соединенную с газоразрядной камерой при помощи двух радиальных газовводов, герметично соединенных с газоразрядной камерой в двух местах, расположенных до мест расположения магнитных систем.

Изобретение относится к газоразрядной плазменной технике и технологии, в частности к источникам плазменных струй атмосферного давления, где исходным газом воздух или его смеси с другими газами. Технический результат - увеличение зоны плазменной обработки, повышение устойчивости плазменной струи к резким колебаниям воздуха в окружающей среде и обеспечение произвольной ориентации плазменных струй.

Изобретение относится к области электротермической техники, а именно к электродуговым устройствам, вырабатывающим плазму. Технический результат - повышение равномерности потока плазмы, уменьшение рассеивания энергии плазмы при движении к обрабатываемой поверхности детали.

Изобретение относится к области электротермической техники, а именно к устройствам, вырабатывающим плазму. Технический результат - упрощение конструкции, обеспечение регулирования скорости движения, температуры и количества плазмы на выходе трубчатого корпуса.

Изобретение относится к электрофизическим способам получения химически чистого пероксида водорода в форме водного раствора и может быть использовано в здравоохранении, медицине, пищевой промышленности, растениеводстве. Способ СВЧ-плазменной активации воды для синтеза пероксида водорода основан на непрерывной генерации плазмы безэлектродным факельным разрядом, который создают СВЧ-плазмотроном, генерирующим в парогазовой среде герметичной камеры направленную струю низкотемпературной плазмы инертного газа, воздействующей на обрабатываемую воду и водяной пар, возникающий в результате испарения поверхностного слоя воды под воздействием газоплазменной струи.

Изобретение относится к высоковольтной наносекундной технике, в частности к источникам излучения, находящим применение в рентгеновской микроскопии для исследований внутренней структуры клеточных культур в наноразмерном масштабе, а также в фотолитографии и др. областях техники. Технический результат - повышение эффективности работы электроразрядного источника излучения. Электроразрядный источник излучения содержит высоковольтный источник напряжения, газовую систему, разрядник, соединенный последовательно с емкостным накопителем, транспортирующей линией, нагрузкой в составе соосно расположенных дискового катода с центральным отверстием, дискового изолятора, анодного узла с керамическим капилляром, а также камеру с газовым выводом. Транспортирующая линия выполнена высоковольтными полосковыми линиями. 3 ил.
Наверх