Ингибитор анодного действия подземной коррозии стали

Изобретение относится к области защиты металлов от подземной коррозии и может быть использовано для защиты трубопроводов от коррозии в условиях почв Центрального федерального округа РФ. Ингибитор анодного действия подземной коррозии стали содержит осветленное отработанное моторное масло ММОО, полученное безреагентным методом центробежной очистки. Технический результат: защитная эффективность ингибитора подземной коррозии составляет 70-99%, получен простой безреагентной технологией, является доступным из-за отсутствия ограничений сырьевой базы и решает проблему утилизации отработанного моторного масла. 5 табл.

 

По протяженности трубопроводов Россия занимает второе место в мире после США, однако таких изношенных трубопроводов нет ни в одной развитой стране мира. Жилищно-коммунальная сфера РФ становится источником угрозы для социального и экономического развития страны. Дело в том, что значительная часть трубопроводов, особенно в системе ЖКХ, проложена из недолговечных стальных труб [B.C. Ромейко. Журнал Стройпрофиль №5. 2002. http://stroyprofile.com/archive/447/ (дата обращения 14.12.2020)]. Между тем современное энергосберегающее законодательство распространяется как на системы водоснабжения, а так и на неразрывно связанные с ними системы водоотведения, которые являются системами массового обслуживания со значительным ресурсо-энерго-потреблением. Общая подача воды коммунальными водопроводами составляет 27 миллионов кубометров в сутки, водоотведение 21 миллион кубометров в сутки, что в десятки раз превышает подачу природных ресурсов (уголь, нефть, сельскохозяйственные продукты, и т.д.) другими отраслями промышленности [Исаев В.Н. Композиты 21 век. 2011. http://трубыпрагма.рф/-article_id=73.htm/ (дата обращения 11.12.2020).].

По трубопроводам ежегодно перемещается грузов в 154 раза больше, чем всеми другими видами транспорта. При таких объемах потеря даже 1% перекачиваемой воды превышает вес всех твердых грузов, перевозимых в стране в течение года. При отсутствии надежных защитных покрытий в стальных трубопроводах через 10…15 лет появляются сквозные проржавления, трещины в стенке или неплотности в соединениях. Вытекающая из дырявых напорных трубопроводов вода изменяет структуру почвы околотрубного пространства. Это приводит к провалам грунта, подтоплению подвалов, повреждению фундаментов близлежащих зданий. Если рядом проложена канализация, потерявшая герметичность, то вода из водопровода размывает вокруг трубопровода зараженный канализационными стоками (в том числе и фекальными) грунт и может переместить его в водоносные слои. При перерывах водоподачи в напорных трубопроводах образуется вакуум, при котором через сквозные неплотности засасываются грунтовые воды и окружающий грунт, который оседает на внутренней поверхности водопровода. Эти отложения, масса которых в зависимости от диаметра трубопровода составляет 0,5-15 кг на 1 п.м, часто становятся источниками практически всех видов загрязнения питьевой воды. Они фактически сводят «на нет» все усилия очистных сооружений, которые нужны для того, чтобы перевести «природную» воду в категорию «питьевого качества». При общей протяженности трубопроводов водоснабжения 523 тыс.км более 60% отслужили свой амортизационный срок, а около 160 тыс.км по уровню изношенности необходимо заменить. Прямые потери в изношенных трубопроводах воды до 40%, тепла до 15%, электроэнергии в 3…5 раз, стоков до 10% оплачиваются налогоплательщиками, стоимость потерь стала соизмерима с ВВП страны. Нормальный срок службы стальных трубопроводов в системах водоснабжения и водоотведения ~20 лет, а реальный ~ 10…15 лет. Проблему изношенных трубопроводов так или иначе придется решать [В.С. Ромейко. Журнал Стройпрофиль №5. 2002., http://stroyprofile.com/archive/447/ (дата обращения 14.12.2020)].

Одним из методов противокоррозионной защиты подземных стальных сооружений является их изоляция от электролитической среды с помощью битумных покрытий [Семенова И.В., Флорианович Г.М., Хорошилов А.В. Коррозия и защита от коррозии. / Под ред. И.В. Семеновой. - М.: ФИЗМАЛИТ, 2002. - 336 с.].

Битумные покрытия применяют для антикоррозионной защиты чугунных канализационных труб по ГОСТ 6942.3-80 в ОАО "Свободный Сокол" (г Липецк), на Хабаровском заводе отопительного оборудования, Нижнетагильском котельно-радиаторном, Липецком трубном, Думиничском, Макеевском труболитейном заводах. В качестве антикоррозионного покрытия применяют нефтяной битум марки БНИ-1У-3 (ГОСТ 9812-74), строительный битум марок БН 70/30, БН 90/10 (ГОСТ 6617-76), дорожный битум марок БН 90/130. БН 60/90 (ГОСТ 22245-90). Подготовка битума включает обезвоживание и окисление. Перед битумированием трубы подогревают в проходной печи до 200…250°С в течение 10 мин., затем их погружают в ванну с битумом. Температура битума в ванне должна быть 180…200°С. Из ванны трубы поступают на стол кантователя, который поднимает их в наклонном положении для слива остатков битума с поверхности трубы. Качество покрытия должно удовлетворять требованиям ГОСТ 9583-75 и ТУ 14-3-259-74. Основной недостаток этой технологии - пожароопасность, так как нефтяной битум является горючим веществом с температурой вспышки 220…300°С и минимальной температурой самовоспламенения 368°С. Известны случаи загорания битума в ваннах. Кроме того, битум относится к канцерогенным веществам [https://truba24.ru/library/articles/(дата обращения 2.12.2020)].

В качестве антикоррозионного прототипа выбрано нефтяное битумное покрытие, полученное из битума после стадий обезвоживания и окисления на окислительной установке. Такие признаки прототипа, как готовая форма, не требующая смешения компонентов или перемешивания состава перед нанесением, гидрофобность, наличие в составе атомов кислорода, способных к адсорбции на активных центрах защищаемой металлической поверхности, совпадают с существенными признаками заявляемого способа.

Технической задачей является разработка способа защиты трубопроводов от подземной коррозии посредством нанесения покрытий осветленного отработанного моторного масла (ММОО) на их поверхность.

Данная техническая задача решается с помощью оценки защитного действия покрытий осветленного отработанного моторного масла на поверхности углеродистой стали Ст3, рассчитанного по результатам коррозионных испытаний и электрохимических измерений на Ст3 в водных почвенных вытяжках при наличии и в отсутствие покрытия осветленного отработанного моторного масла на металлической поверхности. В качестве коррозионной среды использовали водные вытяжки из почв Тамбовской области РФ в реперных точках отбора и для сравнения 0,5 М раствор хлорида натрия.

Сущность способа заключается в том, что не пожароопасные, вязкие, гидрофобные, содержащие полярные группы с атомами кислорода покрытия осветленного отработанного моторного масла ММОО способны эффективно замедлять анодную ионизацию стали. Защитную эффективность ММОО обуславливают образующиеся в них процессе эксплуатации асфальто-смолистые вещества: нейтральные смолы и асфальтены. Они адсорбируются на активных центрах поверхности металла, что и обеспечивают основной вклад в защитную эффективность [Вигдорович В.И., Князева Л.Г., Цыганкова Л.Е. и др. Научные основы и практика создания антикоррозионных материалов на базе отработанных нефтяных и растительных масел. Тамбов. Изд-во Першина Р.В. 2012. 325 с.].

По химическому составу нефтяные масла представляют собой смесь углеводородов (изопарафиновых, нафтено-парафиновых, нафтено-ароматических) с эффективной молекулярной массой 300-750 г/моль, содержащих в составе молекул 20-60 атомов углерода, а также гетероорганические соединения, содержащие кислород, серу, азот и являющихся основой смол, содержащихся в базовых маслах [Магеррамов A.M., Ахмедова Р.А., Ахмедова Н.Ф. Нефтехимия и нефтепереработка. Учебник для высших учебных заведений. Баку: «Бакы Университета», 2009. 600 с.].

При длительной эксплуатации в двигателях внутреннего сгорания моторные качество масла ухудшается из-за термического разложения; окисления; испарения; деградации присадок и истощения их действия; загрязнения продуктами сгорания топлива, масла и продуктами износа; обводнения в результате конденсации воды и газов, проникающих в картер или нарушения герметичности системы охлаждения; смешения масла с топливом из-за неисправностей топливного насоса или топливной системы и др. В результате масла не могут дальше применяться по целевому назначению и должны быть заменены свежими. Продолжительность работы масла по основному назначению измеряется в мото-часах (м-ч). Выраженный ингибирующий эффект по отношению к коррозии стали дают содержащиеся в отработанном моторном масле (ММО) высшие альдегиды, карбоновые кислоты, смолисто-асфальтеновые соединения, являющиеся продуктами окисления углеводородов, входящих в состав моторных масел и их присадок (таблица 1 и 2). Защитная эффективность по отношению к коррозии стали систематически возрастает с увеличением срока эксплуатации масла [Вигдорович В.И., Цыганкова Л.Е., Шель Н.В., Таныгин А.Ю. Антикоррозионные составы на базе ингибированных товарных и отработанных нефтяных и рапсовых масел. Научные основы и практика разработки. // Вестник Тамбовского государственного технического университета. - 2008. Т. 14. №3. С. 517-529].

Многие ингибиторы коррозии и консервационные составы на их основе которых имеют лучший товарный вид, нежели отработанное моторное масло ММО. Из-за этого проведена процедура осветления ММО. Помимо декоративных соображений следовало удалить из ММО механические примеси и асфальтоподобный слой, которые могли затруднить пневмораспыление при комнатной температуре. Покрытие осветленного ММО по сравнению с неосветленным отработанным моторным маслом менее эффективно для защиты стали, но оно более эффективно по сравнению влиянием пленки свежего моторного масла М-10Г2(к) [Вигдорович В.И., Князева Л.Г., Зазуля А.Н., Цыганкова Л.Е. и др. Научные основы и практика создания антикоррозионных материалов на базе отработанных нефтяных и растительных масел. Тамбов. Изд-во Першина Р.В. 2012. 325 с.].

Предпочтительно было использовать безреагентное осветление отработанного моторного масла ММОО, поскольку это упрощает и удешевляет процесс получения материала покрытия для стальных трубопроводов ЖКХ. Само по себе нанесение ММОО на поверхность трубопровода может облегчить подготовку зданий к сезонной эксплуатации, проведение текущего и капитального ремонта и в ряде случаев сократить или даже исключить необходимость внепланового ремонта трубопроводов. Еще одно преимущество осветленного отработавшего моторного масла, как и не осветленного, - это возможность нанесения покрытия на влажную поверхность. Дело в том, что масла лучше, чем вода смачивают поверхность стали, поэтому при нанесении масляного покрытия происходит вытеснение воды с металлической поверхности. Нефтяные масла водопроницаемы, они не могут полностью предотвратить транспорт воды к поверхности стали [Е.Д. Таныгина, В.И. Вигдорович, Л.Е. Цыганкова, Н.В. Шель, А.Н. Зазуля. Антикоррозионные тонкопленочные материалы на основе индивидуальных парафиновых углеводородов. Издательство Першина Р.В. 2013. 424 с.]. Нужно отметить, что в условиях подземной коррозии внешний вид покрытия трубопровода не так уж важен, поэтому процедурой осветления можно и пренебречь.

Осветленное отработанное моторное масло получено безреагентным методом центробежной очистки.

Не пожароопасные, вязкие, гидрофобные, содержащие полярные группы с атомами кислорода осветленные отработанные моторные масла ММОО способны эффективно замедлять анодную ионизацию стали. Защитную эффективность (Z) ММОО обуславливают образовавшиеся в процессе эксплуатации моторных масел асфальто-смолистые вещества: нейтральные смолы и асфальтены. Они адсорбируются на активных центрах поверхности металла, что и обеспечивают основной вклад в защитную эффективность [Вигдорович В.И., Князева Л.Г., Зазуля А.Н., Цыганкова Л.Е. и др. Научные основы и практика создания антикоррозионных материалов на базе отработанных нефтяных и растительных масел. Тамбов. Изд-во Першина Р.В. 2012. 325 с.].

Для оценки защитной эффективности покрытий осветленного отработанного моторного масла ММОО проведены коррозионные и электрохимические исследования в почвенных водных вытяжках стали Ст3 при наличии и отсутствии покрытий ММОО на металлической поверхности. Характеристика почв Тамбовской области приведена в [Кауричев И.С., Панов Н.П. Почвоведение М.: Агропромиздат, 1989. - 718 с., Степанцова Л.В., Красин В.Н. Атлас почв Тамбовской области./ http://docplayer.ru/85992155-Atlaspochv-tambovskoy-oblasti.html / (дата обращения 14.12.2020), Бадин А.Е., Логошина Т.П. Мониторинг плодородия почв Тамбовской области. // Науч.-техн. и произв. жур. Достижения науки и техники АПК. 2019. Т. 33. №10. С. 18-21.].

Для получения водных почвенных вытяжек навеску почвы 200 г помещали в дистиллированную воду 800 г и непрерывно перемешивали в течение 30 минут. Затем суспензию оставляли на сутки и впоследствии жидкость использовали в коррозионных и электрохимических исследованиях [ГОСТ 26483-85]. Коррозионные испытания в почвенных вытяжках и 0,5 М растворе хлорида натрия (раствор сравнения) проведены на образцах стали Ст3 (три образца на 1 точку) в течение 15 суток при комнатной температуре. Образцы Ст3 обрабатывали по 6 классу чистоты, обезжиривали этанолом, взвешивали на аналитических весах (m0). Посредством штангенциркуля определяли размеры образцов и рассчитывали площадь поверхности (S).

Покрытия осветленного отработанного моторного масла ММОО наносили окунанием на предварительно подготовленные образцы при комнатной температуре. Окунание можно заменить пневмораспылением или нанесением с помощью кисти. После нанесения покрытия, образцы оставляли на сутки для формирования защитного покрытия и стекания его избытка. Затем гравиметрически определяли толщину покрытия, которая достигала 40±5 мкм. Скорость коррозии рассчитывали по формуле:

K=([(m0-m1)/(S⋅τ)]-N)⋅104,

где τ - время, ч; m1 - масса образца через 15 суток экспозиции в водной почвенной вытяжке или 0,5 М растворе хлорида натрия после удаления покрытия ММОО и продуктов коррозии (травильный раствор); N - скорость коррозии образца при перетраве чистого металла.

Величину защитного действия ММОО Z вычисляли по уравнению:

Z=[(К01)/К0]⋅100%,

где К0 и К1 - соответственно скорости коррозии в отсутствие и при наличии защитного покрытия.

Стационарные потенциостатические поляризационные измерения проводили с шагом потенциала 20 мВ (комнатная температура, естественная аэрация) (потенциостат IPC-Pro) в трехэлектродной ячейке из стекла «Пирекс» с разделенным анодным и катодным пространством, контактирующим через шлиф. Потенциалы измерены относительно насыщенного хлорид-серебряного электрода сравнения и пересчитаны по н.в.ш. Рабочий электрод из стали Ст3 с горизонтальной рабочей поверхностью площадью 0,5 см2 армировали в оправку из эпоксидной смолы ЭД-5 с отвердителем полиэтиленполиамином, полировали без применения паст, обезжиривали ацетоном и сушили фильтровальной бумагой. Защитную пленку ММОО с фиксированной толщиной 40±5 мкм формировали в течение 15 минут с последующей оценкой гравиметрическим методом. В качестве электролита - 0,5 М раствор хлорида натрия (раствор сравнения) или водная почвенная вытяжка. Выдержка электрода 15 минут. Защитную эффективность по отношению к общей скорости коррозии определяли по формуле:

Zкор=[(i0-i1)/i0]⋅100%,

где Zкор - защитный эффект при потенциале коррозии, %; i0 и i1 - ток коррозии, полученный из поляризационных кривых соответственно в отсутствие при наличии защитного покрытия. Для вычисления степени торможения анодного процесса Za в формулу подставляли величины анодных токов при наличии и в отсутствии покрытия ММОО при потенциале -0,20 В (н.в.ш.).

Для приготовления водных вытяжек использовали образцы почв районов Тамбовской области (таблица 3).

Покрытие ММОО для защиты Ст3 от подземной коррозии в водных почвенных вытяжках оказалось гораздо эффективнее, нежели в 0,5 М растворе хлорида натрия, видимо, за счет того, что некоторые составляющие гумуса почв выступают в роли синергетиков компонентов ММОО.

Кинетические параметры электрохимической коррозии углеродистой стали Ст3 в отсутствие и при наличии защитного покрытия осветленного отработанного моторного масла ММОО рассчитаны графически по данным поляризационных потенциостатических кривых (таблица 5).

Тафелевские коэффициенты наклона КПК и АПК для стали 3 под защитными пленками ММОО в разных водных почвенных вытяжках близки, при этом потенциал коррозии Екор смещается в анодную область по сравнению с таковым Ст3 в отсутствие покрытия. Скорость коррозии iкор при потенциале коррозии стали 3 уменьшается при нанесении покрытий ММОО, что вновь характеризует осветленные отработавшие моторные масла как эффективные ингибиторы коррозии. Величина анодного защитного действия Za, рассчитанная графически при фиксированном анодном потенциале -0,2 В для покрытий ММОО (таблица 5) достигает 70…99%. Вероятно, компоненты ММОО выступают в роли ингибиторов анодного действия.

Предложенный способ защиты трубопроводов от подземной коррозии посредством нанесения осветленных отработанных моторных масел ММОО на их поверхность является целесообразным, поскольку в составе ММОО присутствуют нейтральные смолы и асфальтены, полярные группы которых адсорбируются на активных центрах металлической поверхности. При этом достоверно замедляется скорость анодной парциальной электродной реакции стали на 70-99%. Покрытие осветленного отработанного моторного масла можно наносить на увлажненную поверхность стальных трубопроводов. Покрытие осветленного отработанного моторного масла гидрофобное и не пожароопасное, дешевое, доступное для любого потребителя из-за отсутствия ограничений сырьевой базы и простоты технологии получения. Применение осветленного отработанного моторного масла для защиты трубопроводов ЖКХ от подземной коррозии позволяет облегчить подготовку зданий к сезонной эксплуатации, проведение текущего и капитального ремонта и в ряде случаев сократить или даже исключить необходимость внепланового ремонта трубопроводов. Применение покрытий осветленного отработанного моторного масла для защиты трубопроводов ЖКХ от подземной коррозии решает проблему утилизации отработанных моторных масел.

Ингибитор анодного действия подземной коррозии стали, содержащий осветленное отработанное моторное масло ММОО, полученное безреагентным методом центробежной очистки.



 

Похожие патенты:

Изобретение относится к защите металлов от коррозии, а именно, к ингибиторам коррозии для гидроиспытаний оборудования. Ингибитор коррозии состоит, мас.%: азотсодержащее основание 10-30, гетероциклическое азотсодержащее соединение 20-40 и соль ароматической карбоновой кислоты 30-65.

Изобретение может быть использовано для получения смазочно-охлаждающей жидкости или профилактического средства от ржавчины. Композиция для обработки поверхностей, содержащих алюминий, включает продукт реакции по меньшей мере одного амин-функционализированного органосилана и по меньшей мере одной жирной кислоты.

Изобретение относится к области защиты металлов от атмосферной коррозии с помощью ингибиторов и может быть использовано для долговременной консервации металлоконструкций и изделий из черных металлов. Ингибитор включает присадку АКОР-1, смесь жирных кислот С14-С20 и аминоэтилборат, мас.

Изобретение относится к ингибиторной защите металлов от коррозии, а именно: к способам ускоренной оценки защитных свойств ингибиторов коррозии стальной арматуры в бетоне. Способ включает измерение времени до резкого возрастания плотности тока растворения стали, армирующей бетон, содержащий хлорид натрия от 3 до 4% от массы цемента и испытуемый ингибитор, при этом за резкое возрастание плотности тока принимают ее увеличение до величины 50 - 100 мкА/см2, а сталь экспонируют в условиях капиллярного подсоса влаги и анодной поляризации от источника постоянного тока напряжением 1,2 - 1,6 В, на основании полученных данных проводят ранжирование испытанных ингибиторов по возрастанию защитной способности.

Изобретение относится к области защиты металлов от коррозии. Предложено применение продуктов очистки отработанного моторного масла ПООМ, выделенных в процессе очистки с помощью разделяющего агента карбамида, в качестве защитного покрытия стального трубопровода от подземной коррозии.

Изобретение относится к области защиты металлов от коррозии и может быть использовано для защиты трубопроводов от подземной коррозии. Предлагается применять эмульгин, содержащий кубовые остатки производства алифатических аминов С10 – С15, С16 - С20, в качестве защитного покрытия стального трубопровода от подземной коррозии.

Изобретение относится к области защиты газо- и нефтепромыслового оборудования и трубопроводов, работающих в сероводородсодержащих высокоминерализованных водных средах, от коррозии и наводораживания, а также для транспортировки нефти и газа. Способ включает взаимодействие полиэтиленполиаминов и карбоновых кислот с отгоном реакционной воды и примесей, при этом в качестве полиэтиленполиамина используют тетраэтиленпентамин, который взаимодействует с монокарбоновой кислотой сначала при температуре 145-155°С в течение 4-5,5 ч, затем при 255°С в течение 2 ч в мольном соотношении тетраэтиленпентамин:монокарбоновая кислота, равном 1:2, с последующим взаимодействием полученного бис-имидазолина с нитрилом акриловой кислоты при температуре 80°С.

Изобретение относится к области защиты металлов от коррозии. Защитное покрытие поверхности нелегированной стали содержит 5-75 мас.% порошка модифицированного фосфором медьуглеродного нанокомпозита, распределенного в индустриальном масле И-20.

Изобретение относится к способам ингибирования коррозии металлического материала путем обработки поверхности, подвергающейся опасности коррозии, с помощью добавления ингибитора к раствору и периодической обработкой им трубопроводов. Способ включает предварительную подготовку раствора ингибитора коррозии в емкости, расположенной на передвижной насосной установке для кислотной обработки скважин, остановку работы скважины, стравливание газа из обрабатываемого участка трубопровода, подключение передвижной насосной установки к обрабатываемому участку через концевое соединение задавочной линии и открытие задвижки задавочной линии.

Изобретение относится к составам, применяемым для стабилизационной обработки воды с целью ингибирования солеотложений и коррозии в системах водопользования, и непосредственно касается состава на основе фосфорсодержащих органических комплексообразующих соединений, который может быть использован для стабилизационной обработки воды в замкнутых системах водооборотных циклов промышленных и энергетических предприятий и предприятий коммунального хозяйства.

Группа изобретений относится в целом к теплообменным средам и в некоторых вариантах осуществления к теплообменным средам для ингибирования коррозии в системах теплообмена. Концентраты теплообменной среды включают: понизитель температуры замерзания, воду или их комбинацию, органофосфат формулы: ,где заместители R1, R2 и R3 каждый независимо представляет собой атом водорода, необязательно замещенный содержащий гетероатом алкил, необязательно замещенный содержащий гетероатом алкенил, необязательно замещенный карбонилсодержащий алкил, необязательно замещенный карбонилсодержащий алкенил или необязательно замещенный остаток, выбираемый из группы, включающей алкил, алкенил, арил, фосфоно-, фосфино-, алкиламино-группу, аминогруппу и их комбинации; карбоновую кислоту или ее соль, ион щелочноземельного металла, водорастворимый полимер и компонент, выбираемый из группы, включающей ион щелочного металла, ион переходного металла, неорганический фосфат, молибдат-ион, нитрат-ион, нитрит-ион, азоловое соединение, ингибитор коррозии меди и медного сплава, силикат, стабилизатор силиката и их комбинации. Теплообменная среда свободна от бората. Органофосфат не является моноэтилгексилфосфатом. Описаны также готовые к применению теплообменные среды и способы предупреждения коррозии в системах теплообмена. Группа изобретений позволяет обеспечить длительную, круглогодичную защиту системы охлаждения. Защиту от коррозии металлов всей системы охлаждения, эффективной теплопередачи для контроля и поддержания температуры двигателя для эффективной экономии топлива и смазки, а также предотвращает сбой работ двигателя из-за замерзания, кипения или перегрева. 5 н. и 33 з.п. ф-лы, 1 ил., 19 табл., 51 пр.
Наверх