Устройство эксплуатационного контроля нагрева электродвигателей

Изобретение относится к области электротехники, в частности к контролю теплового состояния обмоток электродвигателей. Технический результат заключается в повышении точности измерения температуры обмотки электродвигателя, универсальности использования устройства для различных типоразмеров электродвигателей и в дистанционной передаче информации о температурном состоянии обмоток статора электродвигателя, достигается тем, что устройство эксплуатационного контроля нагрева электродвигателей содержит датчик температуры нагрева обмоток электродвигателя, полый металлический болт, источник питания, при этом полый металлический болт вворачивается в технологическое отверстие в корпусе электродвигателя до касания сердечника, расположенное в коробке выводов, внутри нижней части полого металлического болта установлен датчик температуры нагрева обмоток электродвигателя, соединенного с блоком управления, который соединен с выходом источника питания, имеющего накопитель заряда, а вход источника питания присоединен к выводам трехфазной обмотки электродвигателя, расположенным в коробке выводов, выход блока управления соединен с модулем связи Wi-Fi, который по беспроводной технологии Wi-Fi посылает сигналы на приемно-передающий узел Wi-Fi, который обменивается информацией с приемником сигнала. 2 ил.

 

Применяется в электротехнике и может быть использована для контроля теплового состояния обмоток электродвигателей в процессе их эксплуатации.

За прототип выбрано устройство эксплуатационного контроля нагрева и защиты электродвигателей (патент на полезную модель РФ №90942, опубл. 20.01.2010, бюл. №2), содержащее датчик температуры нагрева обмоток электродвигателей, связанный с усилителем управляющего сигнала для защиты электродвигателя и магнитным пускателем, полый металлический болт с головкой под гаечный ключ, вворачиваемый в гнездо рым-болта станины к сердечнику электродвигателя, в пазах которого расположена обмотка статора, внутри нижней части полого болта установлен термодатчик, соединенный с усилителем, имеющим автономный источник питания, к которым подключен вход сигнального блока, имеющего задатчик порога срабатывания, к первому выходу сигнального блока подключен световой индикатор-светодиод, к второму выходу сигнального блока подключен звуковой генератор-зуммер, а третий выход сигнального блока соединен с отключающим устройством, связанным с магнитным пускателем, управляющим работой электродвигателя, при этом к верхней части ввинчиваемого полого болта герметически закреплен термостойкий пластиковый корпус, в котором смонтирована и размещена электрическая схема, имеющая автономный источник питания, а оба узла представляют собой один съемный блок эксплуатационного контроля нагрева и защиты электродвигателей.

К недостаткам известного устройства следует отнести:

- полый металлический болт, вворачиваемый в гнездо рым-болта станины электродвигателя, которое имеется не у всех электродвигателей;

- применение для контроля состояния электродвигателей мощностью 11 кВт и более.

- автономный источник питания, уровень заряда которого необходимо постоянно контролировать;

- низкая точность измерения температуры обмотки электродвигателя, из-за отсутствия возможности изменения коэффициента усиления усилителя.

Технический результат - повышение точности измерения температуры обмотки электродвигателя, универсальность использования устройства для различных типоразмеров электродвигателей, дистанционная передача информации о температурном состоянии обмоток статора электродвигателя.

Технический результат достигается устройством эксплуатационного контроля нагрева электродвигателей, содержащим датчик температуры нагрева обмоток электродвигателя, полый металлический болт, источник питания, при этом полый металлический болт вворачивается в технологическое отверстие в корпусе электродвигателя до касания сердечника, расположенное в коробке выводов, внутри нижней части полого металлического болта установлен датчик температуры нагрева обмоток электродвигателя, соединенного с блоком управления, который соединен с выходом источника питания, имеющего накопитель заряда, а вход источника питания присоединен к выводам трехфазной обмотки электродвигателя, расположенным в коробке выводов, выход блока управления соединен с модулем связи Wi-Fi, который по беспроводной технологии Wi-Fi посылает сигналы на приемно-передающий узел Wi-Fi, который обменивается информацией с приемником сигнала, при этом блок управления усиливает полученный сигнал от датчика температуры на значение коэффициента усиления, которое рассчитывается в режиме реального времени согласно функции преобразования.

Существенными признаками, влияющими на заявленный технический результат, являются:

- содержание полого металлического болта, вворачиваемого в технологическое отверстие в корпусе электродвигателя до касания сердечника, расположенного в коробке выводов;

- содержание блока управления;

- содержание источника питания;

- содержание накопителя заряда;

- содержание выводов трехфазной обмотки электродвигателя;

- содержание коробки выводов;

- содержание модуля связи Wi-Fi;

- содержание приемно-передающего узла Wi-Fi;

Содержание полого металлического болта, вворачиваемого в технологическое отверстие в корпусе электродвигателя до касания сердечника, расположенного в коробке выводов, позволяет измерять температуру независимо от наличия или отсутствия рым-болта.

Содержание блока управления дает возможность обрабатывать сигнал от датчика температуры и усиливать его на значение коэффициента усиления, которое рассчитывается в режиме реального времени согласно функции преобразования.

Содержание источника питания обеспечивает питанием элементы устройства.

Содержание накопителя заряда обеспечивает работу устройства при исчезновении напряжения сети, подведенного к источнику питания.

Содержание выводов трехфазной обмотки электродвигателя дает возможность подключения источника питания.

Содержание коробки выводов позволяет поместить устройство в ней и обеспечивает его защиту, как от механических повреждений, так и от воздействия условий окружающей среды.

Содержание модуля связи Wi-Fi позволяет передавать сигнал по беспроводной технологии Wi-Fi.

Содержание приемно-передающего узла Wi-Fi позволяет принимать сигнал от модуля связи Wi-Fi.

Полезная модель поясняется чертежами.

На фигуре 1 показано место установки устройства эксплуатационного контроля нагрева электродвигателей.

На фигуре 2 приведена функция преобразования в соответствии, с которой рассчитывается значение коэффициента усиления.

Устройство эксплуатационного контроля нагрева электродвигателей содержит: датчик температуры 1 нагрева обмоток электродвигателя, полый металлический болт 2, вворачивающийся в технологическое отверстие в корпусе электродвигателя до касания сердечника 3, источник питания 4, имеющего накопитель заряда 5, блок управления 6, который соединен с выходом источника питания, модуля связи Wi-Fi 7, который по беспроводной технологии Wi-Fi посылает сигналы на приемно-передающий узел Wi-Fi 8, который обменивается информацией с приемником сигнала 9.

Элементы электрической схемы устройства, включая источник питания 4 с накопителем заряда 5, блок управления 6 и модуля связи Wi-Fi 7 размещены в коробке выводов 10.

Устройство эксплуатационного контроля нагрева электродвигателей работает следующим образом.

Сигнал от датчика температуры 1 нагрева обмоток электродвигателя, установленного в торце полого металлического болта 2 и помещенного в технологическое отверстие в корпусе электродвигателя, расположенного в коробке выводов 10, о состоянии нагрева корпуса электродвигателя в зоне технологического отверстия, включающей сердечник статора 3, станину 11, и косвенно, обмотку статора 12, подается на блок управления 6, получающий питание от источника питания 4 имеющего накопитель заряда 5 в качестве резервного питания, при этом вход источника питания присоединен к выводам 13 трехфазной обмотки электродвигателя, а затем сигнал поступает в модуль связи Wi-Fi 7, который пол беспроводной технологии Wi-Fi посылает сигналы на приемно-передающий узел Wi-Fi 8, который обменивается информацией с приемником сигнала 9, при этом блок управления усиливает полученный сигнал от датчика температуры на значение коэффициента усиления, которое рассчитывается в режиме реального времени согласно функции преобразования (фиг. 2), чем обеспечивается высокая точность измерения.

Устройство эксплуатационного контроля нагрева электродвигателей передает дистанционно информацию о температурном состоянии обмотки статора электродвигателя, что позволяет персоналу своевременно принимать необходимые меры по устранению аварийных ситуаций и предотвращению преждевременного выхода электродвигателя из строя.

Таким образом, заявленное устройство эксплуатационного контроля нагрева электродвигателей обеспечивает повышение точности измерения температуры обмотки электродвигателя, универсальность использования устройства для различных типоразмеров электродвигателей, дистанционная передача информации о температурном состоянии обмоток статора электродвигателя.

Устройство эксплуатационного контроля нагрева электродвигателей, содержащее датчик температуры нагрева обмоток электродвигателя, полый металлический болт, источник питания, отличающееся тем, что полый металлический болт вворачивается в технологическое отверстие в корпусе электродвигателя до касания сердечника, расположенное в коробке выводов, внутри нижней части полого металлического болта установлен датчик температуры нагрева обмоток электродвигателя, соединенного с блоком управления, который соединен с выходом источника питания, имеющего накопитель заряда, а вход источника питания присоединен к выводам трехфазной обмотки электродвигателя, расположенным в коробке выводов, выход блока управления соединен с модулем связи Wi-Fi, который по беспроводной технологии Wi-Fi посылает сигналы на приемно-передающий узел Wi-Fi, который обменивается информацией с приемником сигнала, при этом блок управления усиливает полученный сигнал от датчика температуры на значение коэффициента усиления, которое рассчитывается в режиме реального времени согласно функции преобразования.



 

Похожие патенты:

Изобретение относится к области связи. Техническим результатом является повышение гибкости и/или эффективности обмена данными.

Изобретение относится к области технологий беспроводной связи. Технический результат изобретения заключается в более гибком определении оконечным устройством мощности передачи, что позволяет ему лучше адаптироваться к текущей сети.

Изобретение относится к технологиям связи. Технический результат изобретения заключается в обеспечении управления беспроводным соединением в системе 5G в случаях, когда функции базовой станции разделены.

Изобретение относится к беспроводной связи. Технический результат заключается в уменьшении частоты отказов при передаче обслуживания и повышении вероятности успешной передачи обслуживания.

Изобретение относится к беспроводной связи. Технический результат заключается в обеспечении управления пакетами с учетом архитектуры двухсистемной связи.

Изобретение относится к способу управления зарезервированным транспортным средством. Способ управления зарезервированным транспортным средством для устройства управления зарезервированным транспортным средством.

Изобретение относится к средствам генерирования ключа. Технический результат – осуществление защиты безопасности для голосовой услуги.

Изобретение относится к области беспроводной связи. Технический результат заключается в сокращении количества служебной информации при передаче сигнала и повышении эффективности использования частоты.

Изобретение относится к области связи. Технический результат состоит в достижении возможности для UE конфигурирования надлежащей информации вторичного узла (SN) в сообщении Msg4, после того, как UE в режиме двойного подключения (DC) переходит в неактивное состояние, когда соединение управления радиоресурсами (RRC) возобновлено.

Изобретение относится к области связи. Технический результат заключается в возможности сократить кадр SSW и завершить SLS за короткое время, даже если число секторов увеличивается.

Изобретение относится к электротехнике, а именно к установкам для подсушки изоляции обмоток трехфазного асинхронного электродвигателя, и может быть использовано для защиты трехфазных асинхронных электродвигателей, работающих со значительными перерывами между включениями, преимущественно в помещениях с повышенной влажностью и вне помещений.
Наверх