Способ получения микрокристаллов cs2so4(ti) из водного раствора



Способ получения микрокристаллов cs2so4(ti) из водного раствора
Способ получения микрокристаллов cs2so4(ti) из водного раствора
Способ получения микрокристаллов cs2so4(ti) из водного раствора
C01P2004/61 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2772758:

Федеральное государственное бюджетное учреждение науки Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук (ИФТТ РАН) (RU)

Изобретение относится к области получения микрокристаллов Cs2SO4-TI, являющихся люминофорами и сцинтилляторами для регистрации ионизирующих излучений в медицине, системах безопасности, в мониторинге окружающей среды. Микрокристалл Cs2SO4-TI получают из ненасыщенного водного раствора, содержащего сульфат цезия и соль таллия, который смешивают с обеспечивающим его пересыщение высаливателем, выбранным из органической жидкости, неограниченно растворимой в воде, но в которой соли цезия и таллия не растворимы, а образовавшийся осадок выделяют фильтрованием полученной суспензии. В качестве соли таллия используют однозамещенный фосфат таллия TIH2PO4 или иодид таллия TII. В качестве высаливателя могут быть использованы ацетон или диметилсульфоксид. Быстрым превращением указанного раствора из ненасыщенного в насыщенный добавлением в него водорастворимого органического высаливателя обеспечивается скоростное выделение микрокристаллов сульфата цезия с однородным распределением компонентов. За счет этого формируются сцинтилляционные микрочастицы с высокой интенсивностью ультрафиолетового высвечивания, эффективные как при самостоятельной регистрации ионизирующих излучений, так и в композициях с органическими люминофорами. 6 з.п. ф-лы, 1 ил., 1 табл., 7 пр.

 

Изобретение относится к области получения люминофоров, в частности, сцинтилляторов, а именно к получению микрокристаллов сцинтиллятора сульфата цезия, легированного таллием, Cs2SO4(TI). Этот сцинтиллятор может быть использован в медицине, системах безопасности, в мониторинге окружающей среды и др. Основная роль сцинтиллятора заключается в преобразовании невидимого ионизационного излучения, такого как рентгеновские или гамма, в фотоны, которые затем регистрируются высокочувствительным фотоприемником. Cs2SO4(TI) является сцинтиллятором ультрафиолетового диапазона, то есть при поглощении высокоэнергетичного излучения микрокристаллы Cs2SO4(TI) излучают фотоны УФ диапазона. Такого рода сцинтиллятор со световым излучением в ультрафиолетовом диапазоне особенно эффективен в сцинтилляционных композитах с органическим люминофорами. В этом случае, как показано в работе «Спектроскопия композитных сцинтилляторов», Шмурак С.З., Кедров В.В., Классен Н.В., Шахрай О.А., ФИЗИКА ТВЕРДОГО ТЕЛА, 2012, том 54, №11, стр. 2131-2140, энергия электронных возбуждений, образованных в неорганическом сцинтилляторе при поглощении ионизирующего излучения, безизлучательным образом передается органическому люминофору, время высвечивания которого значительно короче, чем у неорганического сцинтиллятора. Такое ускорение процесса регистрации ионизирующих излучений значительно улучшает чувствительность и ряд других характеристик радиационных детекторов.

Микрокристаллический порошок сульфата цезия, легированный таллием, получали из водных растворов, содержащих сульфат цезия и соль таллия.

Известен способ выращивания кристаллов Cs2SO4 из водных растворов методом снижения температуры от 40 до 25°С, описанный в работе «Исследования фазовых равновесий в системе Cs2SO4-Rb2SO4-H2SO4-H2O», В.А. Коморников,, И.С. Тимаков, О.Б. Зайнуллин, В.В. Гребенев, И.П. Макарова, Е.В. Селезнева, КРИСТАЛЛОГРАФИЯ, 2018, том 63, №6, с. 957-962.

Недостатком этого способа является неоднородное распределение легирующей примеси в кристаллах из-за изменения пересыщения в растворе при снижении температуры, что приводит к понижению эффективности преобразования сигнала.

Наиболее близким к предлагаемому способу по совокупности основных признаков является способ выращивания кристаллов Cs2SO4(TI) путем медленного испарения водного раствора, описанный в работе «Optical and Thermoluminescence Studies on Thallium-Doped Suprapure Cesium Sulphate», B.S.V.S.R. Acharyulu and V.S. Kishan Kumar, phys. stat. sol. (a) 105, 303 (1988). Недостатками этого способа являются длительный процесс получения продукта и неоднородное распределение легирующей примеси в кристаллах из-за изменения пересыщения вследствие испарения раствора, что приводит к понижению эффективности преобразования сигнала.

Задачей предлагаемого способа является устранение недостатков известного способа путем введения в раствор исходных солей, дополнительного компонента - высаливателя, который резко снижает растворимость солей, что приводит к быстрой спонтанной кристаллизации продукта с заданным содержанием таллия, и обеспечивает интегральную интенсивность сигнала Cs2SO4(TI), сопоставимую с сигналом от промышленного сцинтиллятора цезий йод, легированного таллием, CsI(TI).

Техническим результатом является создание способа получения микрокристаллов Cs2SO4(TI), обеспечивающих высокую интенсивность рентгенолюминесценции, близкую к интенсивности промышленного сцинтиллятора Csl(TI).

Поставленная задача решается тем, что в способе получения микрокристаллов Cs2SO4(TI) из водных растворов заданного состава Cs2SO4(TI) используется высаливатель, который является хорошо растворимой в воде жидкостью, но в которой соли цезия и таллия нерастворимы. Добавление высаливателя превращает ненасыщенный раствор в пересыщенный, что приводит к быстрому выпадению в осадок микрокристаллов Cs2SO4(TI). Сульфат цезия хорошо растворим в воде (178 г в 100 мл воды при 20°С), не подвергается гидролизу и не образует кристаллогидратов. Не растворяется в этаноле, ацетоне и других полярных органических жидкостях, например, в диметилсульфоксиде (ДМСО). Поскольку эти органические жидкости неограниченно растворимы в воде, они являются прекрасными высаливателями для сульфата цезия из его водных растворов.

Для измерения спектральных характеристик полученного микрокристаллического сцинтиллятора Cs2SO4(TI) образец помещали в измерительную ячейку рентгеновской установки. Из полученного спектра определяли световой и энергетический выход сцинтиллятора. Для определения времени высвечивания сцинтиллятора применяли импульсную рентгеновскую технику.

Приведем примеры реализации данного изобретения. Во всех примерах содержание TI относительно Cs2SO4 составляло 0,3 мол. %.

Пример 1. 3 г Cs2SO4 и 7.5 мг TIHSO4 растворили в 3 мл воды при 20°С. Полученный двухкомпонентный раствор влили в 100 мл этилового спирта при перемешивании. Образовавшийся осадок выделили фильтрованием суспензии через двойной бумажный фильтр, промыли спиртом и высушили при 80°С.

Пример 2. 3 г Cs2SO4 и 7.5 мг TIH2PO4 растворили в 3 мл воды при 20°С. Полученный двухкомпонентный раствор влили в 100 мл этилового спирта при перемешивании. Образовавшийся осадок выделили фильтрованием суспензии через двойной бумажный фильтр, промыли спиртом и высушили при 80°С.

Пример 3. 3 г Cs2SO4 и 8,2 мг иодида таллия TII растворили в 3 мл воды при 60°С. Полученный двухкомпонентный раствор влили в 100 мл этилового спирта при перемешивании. Образовавшийся осадок выделили фильтрованием суспензии через двойной бумажный фильтр, промыли спиртом и высушили при 80°С.

Пример 4. 3 г Cs2SO4 и 7.5 мг TIHSO4 растворили в 3 мл воды при 20°С. Полученный двухкомпонентный раствор влили в 100 мл ацетона при перемешивании. Образовавшийся осадок выделили фильтрованием суспензии через двойной бумажный фильтр, промыли спиртом и высушили при 80°С.

Пример 5. 3 г Cs2SO4 и 7.5 мг TIH2PO4 растворили в 3 мл воды при 20°С. Полученный двухкомпонентный раствор влили в 100 мл ацетона при перемешивании. Образовавшийся осадок выделили фильтрованием суспензии через двойной бумажный фильтр, промыли спиртом и высушили при 80°С.

Пример 6. 3 г Cs2SO4 и 7.5 мг TIHSO4 растворили в 3 мл воды при 20°С. Полученный двухкомпонентный раствор влили в 100 мл диметилсульфоксида. при перемешивании. Образовавшийся осадок выделили фильтрованием суспензии через двойной бумажный фильтр, промыли спиртом и высушили при 80°С.

Пример 7.. 3 г Cs2SO4 и 7.5 мг TI2PO4 растворили в 3 мл воды при 20°С. Полученный двухкомпонентный раствор влили в 100 мл диметилсульфоксида при перемешивании. Образовавшийся осадок выделили фильтрованием суспензии через двойной бумажный фильтр, промыли спиртом и высушили при 80°С.

Содержание TI относительно Cs2SO4 в количестве 0,3 мол. % является оптимальным. При таком содержании TI полученные образцы демонстрируют максимальную интенсивность свечения.

Спектры рентгенолюминесценции образца Cs2SO4 (0,3% TI) и образца Csl(TI) приведены на фиг. 1. Квантовые выходы Cs2SO4 (0,3% TI) - ηCSO и Csl(TI) - ηCl пропорциональны площадям под кривыми JCSO(λ) и JCl(λ) (λ в nm), фиг. 1. Максимальный квантовый выход Cs2SO4(TI) составляет 0,83 относительно Csl(TI). В то же время максимальный энергетический световыход Cs2SO4 (0,3% TI) относительно Csl(TI), равный отношению площадей под кривыми JCSO(λ) и JCl(λ) (λ в eV), равен 2,14, то есть в ~ 2 раза больше, чем для Csl(TI). Время высвечивания полученных образцов Cs2SO4(TI) составляет 0,5 мксек. В таблице 1 приведена зависимость отношения квантового выхода Cs2SO4(TI) - ηCSO к квантовому выходу Csl(TI) - ηCl от содержания таллия.

Как видно из таблицы 1, изменение содержания таллия, как в сторону увеличения, так и в сторону снижения, уменьшает квантовый выход образцов CS2SO4(TI).

Установлено, что порядок совмещения водного раствора солей и органической жидкости (высаливателя) не имеет принципиального значения, поскольку спектральные характеристики образцов Cs2SO4(TI), полученных вливанием 100 мл спирта в 3 мл водного раствора солей, полностью совпадают со спектральными характеристиками образцов, полученных в Примере 1, в котором раствор солей вливался в высаливатель.

В процессе работы по реализации способа были получены микрокристаллы Cs2SO4(TI) с типичными размерами в интервале 10-100 мкм. На фиг. 1 представлены спектры рентгенлюминесценции микрокристаллов Cs2SO4(TI) и Csl(TI), демонстрирующие интегральные световыходы обоих образцов.

Источник рентгеновского излучения: трубка БСВ-29 (Со)), 30 кВ, 15 мА Площади под кривыми спектров рентгенолюминесценции Cs2SO4: TI (SCSO) и Csl:TI (SCl).

1. Способ получения микрокристаллов Cs2SO4-TI из водного раствора, содержащего сульфат цезия и соль таллия, отличающийся тем, что ненасыщенный водный раствор, содержащий сульфат цезия и соль таллия, смешивают с обеспечивающим его пересыщение высаливателем, выбранным из органической жидкости, неограниченно растворимой в воде, но в которой соли цезия и таллия не растворимы, а образовавшийся осадок выделяют фильтрованием полученной суспензии.

2. Способ по п. 1, отличающийся тем, что в качестве соли таллия используют однозамещенный фосфат таллия TIH2PO4.

3. Способ по п. 1, отличающийся тем, что в качестве соли таллия используют иодид таллия TII.

4. Способ по п. 1, отличающийся тем, что в качестве высаливателя используют ацетон.

5. Способ по п. 2, отличающийся тем, что в качестве высаливателя используют ацетон.

6. Способ по п. 1, отличающийся тем, что в качестве высаливателя используют диметилсульфоксид.

7. Способ по п. 2, отличающийся тем, что в качестве высаливателя используют диметилсульфоксид.



 

Похожие патенты:

Изобретение относится к технологии выращивания сцинтилляционных монокристаллов на основе бромида церия с общей формулой CeBr3 со 100 %-ным содержанием сцинтиллирующего иона Се3+ методом горизонтальной направленной кристаллизации (ГНК) и может быть использовано при изготовлении элементов детекторов и спектрометров, чувствительных к гамма-, рентгеновскому излучению и другим видам ионизирующего излучения.

Изобретение относится к области исследования космической радиации, а именно к детекторам частиц и гамма-излучения, устанавливаемых на космических аппаратах. Техническим результатом является обеспечение возможности размещения устройства для регистрации рентгеновского излучения, гамма-излучения и заряженных частиц (т.е.

Изобретение относится к химической промышленности и может быть использовано при изготовлении сцинтилляторов для обнаружения излучения в системах компьютерной томографии (КТ), позитронно-эмиссионной томографии (ПЭТ), однофотонной эмиссионной компьютерной томографии (ОФЭМТ). Сначала формируют порошок пламенно-аэрозольным пиролизом жидких предшественников; синтезом в процессе горения; обработкой для получения частиц с размером менее 500 мкм, например, размалыванием; осаждением частиц из жидких растворов путем изменения рН или синтезом на основе золегелевой технологии.

Изобретение относится к области реакторных измерений и может быть использовано в системах контроля и управления ядерных реакторов. Размещают первый источник ионизирующего излучения на заданном расстоянии от детектора и определяют показания калибруемого счетного канала.

Изобретение относится к области радиационного контроля и обеспечения радиационной безопасности объектов использования атомной энергии и может применяться для обнаружения области протечки радионуклидов и оценки ее величины при эксплуатации водо-водяных ядерных реакторов. Техническим результатом изобретения является обеспечение возможности обнаружения области протечки радиоактивного азота в парогенераторах ядерных реакторов КЛТ-40.

Группа изобретений относится к системам визуализации. Система визуализации излучения включает в себя устройство генерирования излучения, выполненное с возможностью генерировать излучение по направлению к объекту, устройство детектирования излучения, выполненное с возможностью детектировать, в виде сигнала изображения, излучение, падающее на него, камеру, выполненную с возможностью записывать видеоизображение, относящееся к обстоятельствам, при которых осуществляется визуализация излучения с использованием излучения в кабинете для визуализации, и устройство управления камерой, выполненное с возможностью управлять камерой.

Изобретение относится к рентгенотехнике и может быть использовано в медицинских рентгеновских установках и томографах с высоким пространственным разрешением, чувствительностью и скоростью сканирования. Технический результат – повышение чувствительности до предельно возможной, устранение паразитного фона рассеянного рентгеновского излучения, повышение разрешающей способности и площади регистрации, увеличение динамического диапазона, повышение ресурса и долговечности работы устройства, снижение дозовой нагрузки на пациента.

Изобретение относится к химической промышленности и может быть использовано при изготовлении устройств для систем безопасности или обнаружения ультрафиолетового и/или рентгеновского излучения, например датчиков, индикаторов или детекторов. Материал характеризуется следующей формулой (I): в которой М' - комбинация по меньшей мере двух моноатомных катионов разных щелочных металлов, выбранных из Li, Na, K и Rb, содержащая 0-98 мол.

Изобретение относится к измерению ядерных излучений. Способ измерения интенсивности радиационного излучения неизвестного состава, при котором радиационное излучение пропускают через как минимум два детектора и систему обработки, при этом детектирование производится во время облучения, при этом сами детекторы имеют чувствительные элементы разного объема; затем, при помощи системы обработки, включающей в себя микроконтроллер, по соотношению скоростей счета в разных детекторах определяют суммарную интенсивность радиационного излучения и соотношение вкладов заряженных и нейтральных компонент в измеряемом радиационном излучении.

Изобретение относится к области техники детектирования ионизирующего излучения. В детекторе массив единичных сцинтилляционных ячеек с лунками для сбора света выполнен в виде монолитного блока.

Изобретение относится к технологии выращивания сцинтилляционных монокристаллов на основе бромида церия с общей формулой CeBr3 со 100 %-ным содержанием сцинтиллирующего иона Се3+ методом горизонтальной направленной кристаллизации (ГНК) и может быть использовано при изготовлении элементов детекторов и спектрометров, чувствительных к гамма-, рентгеновскому излучению и другим видам ионизирующего излучения.
Наверх