Способ сепарации потока многокомпонентной среды (варианты)

Изобретение относится к способам низкотемпературной обработки потока многокомпонентной среды, а именно - сепарации природного газа. При сепарации потоку многокомпонентной среды (далее - поток) придают ускорение в конфузорном участке соплового канала, после чего направляют в критическое сечение, где обеспечивают увеличение скорости потока до звуковых значений, далее поток подают в диффузорный участок, где его скорость увеличивают до сверхзвуковых значений и обеспечивают конденсацию жидкой фракции углеводородных газов и более тяжелых углеводородов С5+. Далее поток подают на устройство закручивания, равномерно распределяют по каналам, тангенциально закручивают вокруг оси соплового канала с одновременным расширением газа и выделением жидкой фракции в пристеночный слой диффузорного участка. В варианте исполнения под действием реактивной силы устройство закручивания потока приводят во вращение, передавая крутящий момент электрогенератору. Жидкую фракцию тяжелых углеводородов подают в кольцевую полость, а затем - в полость узла отбора капель и/или твердых частиц, а отсепарированный газовый поток подают внутрь полого конуса, откуда отбирают для дальнейшего использования. Позволяет значительно повысить эффективность процесса улавливания сконденсировавшихся компонентов при сверхзвуковых скоростях и обеспечить дополнительную возможность генерации электрической энергии. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к способам низкотемпературной обработки потока многокомпонентной среды, а именно - сепарации природного газа и может быть использовано с целью отделения жидкой фракции углеводородных газов, а также более тяжелых углеводородов С5+, попутной генерации электроэнергии при подготовке природного газа в нефтегазовой промышленности.

Известен способ сжижения газа, включающий его адиабатическое охлаждение в сверхзвуковом сопле и отбор жидкой фазы, при этом перед подачей газового потока в сопло его закручивают до достижения центробежного ускорения в потоке во время прохождения им сопла не менее 10000g, а отбор жидкой фазы в сопле осуществляют в месте, отстоящем от точки росы на расстоянии, определяемом соотношением L=V⋅τ, где L - расстояние от точки росы в сопле до места отбора сжиженной компоненты, м; V - скорость газового потока на входе в сопло, м/с; τ - время движения капель сжиженной компоненты от оси потока до стенки сопла, с; g - ускорение свободного падения, м/с2 (Патент RU №2139479, МПК F25J 1/00, 1999).

Основными недостатками известного способа являются необходимость в высокой степени закрутки потока газа перед его подачей в сопло до обеспечения значений центробежного ускорения в потоке во время прохождения им сопла более 10000g с целью предупреждения уноса капель сконденсировавшейся жидкой фазы с основным потоком, низкая эффективность отвода жидкой фракции к периферийным областям сопла, низкая эффективность улавливания сконденсировавшихся компонентов при сверхзвуковых скоростях, отсутствие генерации электрической энергии.

Из уровня техники известен способ сжижения и сепарации газов или выделения одного или нескольких газов из их смеси, включающий подачу в основное дозвуковое или сверхзвуковое сопло потока газа, состоящего из одной или нескольких частей, закрутку одной или нескольких частей потока вокруг размещенных полностью или частично в основном сопле одного или нескольких дополнительных дозвуковых или сверхзвуковых сопел, выходы которых размещены в дозвуковой или сверхзвуковой части основного сопла, и совместную подачу всех частей газового потока в основное дозвуковое или сверхзвуковое сопло, обеспечивающее расширение газа с достижением статического давления и статической температуры, которые соответствуют условию конденсации газа или его целевых компонент, и отбор газожидкостной смеси, обогащенной целевыми компонентами, от газовой смеси, при этом газовые потоки через дополнительные сопла подают закрученными и/или незакрученными с обеспечением давлений на выходах дополнительных сопел достаточными для истечения газа из них в основном сопле (Патент RU №2380630, МПК F25J 3/06, 2010).

К основным недостаткам известного способа сжижения и сепарации газов или выделения одного или нескольких газов из их смеси относятся сложность реализации способа, обусловленная подачей части потока газов в одно или несколько дополнительных дозвуковых или сверхзвуковых сопел и закруткой вокруг них оставшейся части потока газов, необходимость в высокой степени закрутки части газового потока перед его подачей в основное дозвуковое или сверхзвуковое сопло с целью предупреждения уноса капель сконденсировавшейся жидкой фазы с основным потоком, отсутствие генерации электрической энергии.

Известна комбинированная система сепаратора и турбогенератора, содержащая смонтированные внутри основного трубопровода с газом высокого давления турбину и генератор, перед турбиной внутри основного трубопровода установлены последовательно и аксиально завихритель, секция сепарации жидкости и секция отбора газожидкостного потока, причем секция отбора газожидкостного потока соединена дополнительным трубопроводом с основным потоком после турбины, а в дополнительном трубопроводе установлен регулирующий клапан, при этом поток газа направляют в завихритель, представляющий собой неподвижный элемент с лопатками, установленными под углом атаки к входному потоку, после прохождения лопаток поток приобретает тангенциальную скорость, т.е. закручивается, закрученный поток газа далее подают в секцию сепарации жидкости, в которой за счет центробежных сил капли отбрасываются к стенкам канала, на выходе из секции сепарации жидкости вся жидкость концентрируется в двухфазном пограничном слое на стенках канала, после чего в секции отбора газожидкостного потока происходит отбор пристеночного двухфазного пограничного слоя, газожидкостный поток далее отводят через дополнительный трубопровод в основной канал за турбину, при этом при помощи регулирующего клапана регулируют расход газа, отбираемого через дополнительный трубопровод, и обеспечивают требуемый расход газа через турбину, такое регулирование позволяет поддерживать оптимальный расход газа через турбину в условиях изменения электрической нагрузки на генератор (потребной мощности генератора) (Патент RU №2746349, МПК F25B 11/00, F01D 15/10, F01D 1/02, B01D 45/12, B01D 45/16, 2021).

Основными недостатками способа работы известной комбинированной системы являются необходимость в высокой степени закрутки потока перед секцией сепарации жидкости до обеспечения значений центробежного ускорения в потоке во время прохождения им сопла секции сепарации жидкости более 10000g с целью предупреждения уноса капель сконденсировавшейся жидкой фазы с основным потоком газа и достижения каплями жидкости стенок канала, низкая эффективность генерации электроэнергии ввиду использования энергии обедненного газового потока, а также повышенные требования к качеству потока газа, проходящего через турбину.

Наиболее близким техническим решением по совокупности признаков к заявляемому объекту и принятому за прототип относится способ и устройство для сепарации многокомпонентной среды, которое включает форкамеру с установленным в ней средством закручивания потока среды, соединенный с форкамерой сопловой канал для сепарации и узел отбора капель и/или твердых частиц, канал сепарации, содержащий конфузорный, диффузорный и расположенный между ними цилиндрический участки, причем цилиндрический участок имеет длину образующей больше чем 0,1D, где D - диаметр цилиндрического участка, при этом диффузорный участок выполнен с кольцевым уступом в виде ступени, плоскость которой расположена перпендикулярно оси канала для снижения уровня пульсации в потоке и, как следствие, увеличения эффективности сепарации и уменьшения потерь полного давления потока среды (Патент RU №2538992, МПК F25J 3/00, 2015 - прототип).

Недостатками известного способа являются необходимость в высокой степени закрутки потока многокомпонентной среды в конфузорном участке соплового канала до обеспечения значений центробежного ускорения в потоке во время прохождения им сопла более 10000g с целью предупреждения уноса капель сконденсировавшейся жидкой фазы с основным потоком газа и достижения каплями стенок диффузорного участка, низкая эффективность отвода жидкой фракции к периферийным областям диффузорного участка, низкая эффективность улавливания сконденсировавшихся компонентов при сверхзвуковых скоростях, отсутствие генерации электрической энергии.

Задача, на решение которой направлено заявленное изобретение, заключается в создании способа сепарации потока многокомпонентной среды, в котором отсутствуют указанные недостатки, а при его использовании не требуется высокая степень закрутки потока многокомпонентной среды в конфузорном участке соплового канала, при этом организация направленного отвода жидкой фракции к периферийным областям диффузорного участка выполняется с гораздо большей эффективностью, благодаря чему происходит значительно меньший унос сконденсировавшейся фракции с основным газовым потоком, при этом имеется дополнительная возможность попутной генерации электрической энергии.

Решение поставленной задачи достигается тем, что в предложенном способе сепарации потока многокомпонентной среды, заключающемся в подаче потока многокомпонентной среды в устройство, содержащее сопловой канал с конфузорным и диффузорным участками, и расположенным между ними критическим сечением, устройство закручивания упомянутого потока, установленное в указанном канале, узел отбора капель и/или твердых частиц, установленный в выходной части диффузорного участка, согласно изобретению, устройство для закручивания потока многокомпонентной среды выполняют в виде профилированного тела вращения, торцы которого соединяют с основаниями входного и выходного конусов, причем наружную поверхность упомянутого тела вращения, предпочтительно, выполняют эквидистантной внутренней поверхности диффузорного участка соплового канала, при этом на поверхности указанного тела вращения размещают профилированные лопатки с образованием каналов между ними, преимущественно спиралевидных, причем в концевой части каналов выполняют профилированный зазор, при этом устройство закручивания потока многокомпонентной среды устанавливают коаксиально в диффузорном участке соплового канала, причем входной конус устройства для закручивания потока многокомпонентной среды располагают на расстоянии от критического сечения, при котором обеспечивают значение скорости потока многокомпонентной среды выше скорости звука, при этом в выходной части диффузорного участка соплового канала закрепляют полый конус с образованием кольцевой полости у внутренней поверхности диффузорного участка соплового канала, причем упомянутую полость соединяют с полостью узла отбора капель и/или твердых частиц, при этом при сепарации поток многокомпонентной среды под действием входного давления подают в сопловой канал, где потоку придают ускорение путем пропускания через конфузорный участок, после чего поток многокомпонентной среды пропускают через критическое сечение соплового канала, в котором обеспечивают увеличение скорости потока многокомпонентной среды до звуковых значений в данной среде, после чего поток многокомпонентной среды подают в диффузорный участок соплового канала, в котором обеспечивают значение скорости упомянутого потока выше скорости звука в данной среде, при этом в упомянутом потоке снижают статическое давление до минимальных значений, а статическую температуру - до значений ниже температуры точки росы, и обеспечивают конденсацию в дисперсном многокомпонентном газовом потоке жидкой фракции пропана, бутана и более тяжелых углеводородов С5+ в виде капель жидкости, после чего многокомпонентный газовый поток, имеющий сверхзвуковую скорость, подают на входной конус устройства закручивания потока, обеспечивая равномерность, сглаживание пульсаций, снижение газодинамического сопротивления движению и предотвращение отрыва упомянутого потока, который затем закручивают, производят его расширение и направляют жидкую фракцию тяжелых углеводородов в пристеночный слой на периферии диффузорного участка соплового канала под действием центробежной силы, а затем - в кольцевую полость с частью газа и далее - в полость узла отбора капель и/или твердых частиц, при этом основной отсепарированный газовый поток направляют к поверхности выходного конуса устройства закручивания потока, обеспечивая равномерность и снижение газодинамического сопротивления движению упомянутого потока, а затем - внутрь полого конуса, откуда его отбирают для дальнейшего использования.

В варианте выполнения предложенного способа сепарации потока многокомпонентной среды, заключающемся в подаче потока многокомпонентной среды в устройство, содержащее сопловой канал с конфузорным и диффузорным участками, и расположенным между ними критическим сечением, устройство закручивания упомянутого потока, установленное в указанном канале, узел отбора капель и/или твердых частиц, установленный в выходной части диффузорного участка, согласно изобретению, устройство для закручивания потока многокомпонентной среды выполняют в виде профилированного тела вращения, торцы которого соединяют с основаниями входного и выходного конусов, причем наружную поверхность упомянутого тела вращения, предпочтительно, выполняют эквидистантной внутренней поверхности диффузорного участка соплового канала, при этом на поверхности указанного тела вращения размещают профилированные лопатки с образованием каналов между ними, преимущественно спиралевидных, причем между концевой частью упомянутых лопаток и внутренней поверхностью диффузорного участка соплового канала обеспечивают кольцевой зазор, а в концевой части каналов выполняют профилированный зазор, при этом устройство закручивания потока многокомпонентной среды устанавливают коаксиально в диффузорном участке соплового канала с возможностью радиального вращения вокруг своей продольной оси и соединяют с электрогенератором, причем входной конус устройства для закручивания потока многокомпонентной среды располагают на расстоянии от критического сечения, при котором обеспечивается значение скорости потока многокомпонентной среды выше скорости звука, при этом в выходной части диффузорного участка соплового канала закрепляют полый конус с образованием кольцевой полости у внутренней поверхности диффузорного участка соплового канала, причем упомянутую полость соединяют с полостью узла отбора капель и/или твердых частиц, при этом при сепарации поток многокомпонентной среды под действием входного давления подают в сопловой канал, где потоку придают ускорение путем пропускания через конфузорный участок, после чего поток многокомпонентной среды пропускают через критическое сечение соплового канала, в котором обеспечивают увеличение скорости потока многокомпонентной среды до звуковых значений в данной среде, после чего поток многокомпонентной среды подают в диффузорный участок соплового канала, в котором обеспечивают значение скорости упомянутого потока выше скорости звука в данной среде, при этом в упомянутом потоке снижают статическое давление до минимальных значений, а статическую температуру - до значений ниже температуры точки росы, и обеспечивают конденсацию в дисперсном многокомпонентном газовом потоке жидкой фракции пропана, бутана и более тяжелых углеводородов С5+ в виде капель жидкости, после чего многокомпонентный газовый поток, имеющий сверхзвуковую скорость, подают на входной конус устройства закручивания потока, обеспечивая равномерность, сглаживание пульсаций, снижение газодинамического сопротивления движению и предотвращение отрыва упомянутого потока, который затем тангенциально закручивают и производят его расширение, при этом устройство закручивания потока многокомпонентной среды приводят в радиальное вращение вокруг своей продольной оси под действием возникающих реактивных сил, причем крутящий момент от устройства закручивания потока многокомпонентной среды передают электрогенератору для выработки электроэнергии, после чего направляют жидкую фракцию тяжелых углеводородов в пристеночный слой на периферии диффузорного участка соплового канала под действием центробежной силы, а затем - в кольцевую полость с частью газа и далее - в полость узла отбора капель и/или твердых частиц, при этом основной отсепарированный газовый поток направляют к поверхности выходного конуса устройства закручивания потока, обеспечивая равномерность и снижение газодинамического сопротивления движению упомянутого потока, а затем - внутрь полого конуса, откуда его отбирают для дальнейшего использования.

Сущность изобретения иллюстрируется чертежами, где: на фиг. 1 показан продольный разрез устройства для реализации предложенного способа сепарации многокомпонентной среды, на фиг. 2 показан продольный разрез устройства для реализации предложенного способа сепарации в соединении с электрогенератором.

Предложенный способ сепарации может быть реализован при помощи устройства, имеющего следующую конструкцию.

Устройство для сепарации многокомпонентной среды (далее - устройство) содержит сопловой канал 1, включающий конфузорный 2, диффузорный 3 участки и расположенное между ними критическое сечение 4. В диффузорном участке 3 соплового канала установлено устройство 5 закручивания потока многокомпонентной среды. Устройство 5 закручивания потока многокомпонентной среды выполнено в виде профилированного тела вращения, наружная поверхность которого, предпочтительно, эквидистантна внутренней поверхности диффузорного участка 3 соплового канала. Торцы упомянутого профилированного тела вращения соединены с основаниями входного 6 и выходного 7 конусов, причем входной конус 6 расположен на расстоянии от критического сечения 4 соплового канала, при котором обеспечивается значение скорости потока многокомпонентной среды выше скорости звука. На поверхности профилированного тела вращения выполнены профилированные лопатки 9, между которыми образованы каналы 8 для прохода потока многокомпонентной среды, преимущественно спиралевидные. В выходной части диффузорного участка 3 соплового канала установлен полый конус 11 с образованием между внутренней поверхностью диффузорного участка 3 соплового канала и наружной поверхностью упомянутого полого конуса 11 кольцевой полости 10 для прохода жидкой фракции углеводородов.

В варианте исполнения (фиг. 2) устройство для сепарации многокомпонентной среды дополнительно содержит электрогенератор 12, соединенный с устройством 5 закручивания потока многокомпонентной среды.

Предложенный способ сепарации может быть реализован при помощи указанного устройства следующим образом.

Поток многокомпонентной среды (газовой или газожидкостной смеси) под действием входного давления подают в сопловой канал 1, а именно - в конфузорный участок 2 соплового канала, где упомянутому потоку придают ускорение, после чего направляют в критическое сечение 4 соплового канала. В критическом сечении 4 соплового канала обеспечивают увеличение скорости потока многокомпонентной среды до звуковых значений в данной среде, далее поток многокомпонентной среды подают в диффузорный участок 3 соплового канала, где обеспечивают увеличение скорости упомянутого потока до значений выше скорости звука в данной среде и снижают его статическое давление до минимальных значений, а статическую температуру - до величин, значение которых ниже температуры точки росы, в результате чего обеспечивают конденсацию жидкой фракции углеводородных газов и более тяжелых углеводородов С5+ в дисперсном многокомпонентном газовом потоке. Далее поток многокомпонентной среды подают на устройство 5 закручивания потока, которое имеет форму профилированного тела вращения, торцы которого соединены с основаниями входного 6 и выходного 7 конусов с целью снижения газодинамического сопротивления движению, предотвращения отрыва потока и уменьшения его неравномерности. Поток многокомпонентной среды, имеющий сверхзвуковую скорость, равномерно распределяют по каналам 8 устройства 5 закручивания потока, образованным между профилированными лопатками 9.

Поток многокомпонентной среды тангенциально закручивают вокруг оси соплового канала 1 с одновременным расширением газа и выделением жидкой фракции тяжелых углеводородов в виде капель жидкости в пристеночный слой на периферии диффузорного участка 3 соплового канала под действием центробежной силы.

В варианте исполнения (фиг. 2) при пропускании потока многокомпонентной среды через каналы 8 устройства 5 закручивания потока, производят его тангенциальную закрутку вокруг оси соплового канала 1 с одновременным расширением газа и выделением жидкой фракции тяжелых углеводородов в виде капель жидкости в пристеночный слой на периферии диффузорного участка 3 соплового канала под действием центробежной силы. После тангенциальной закрутки и по мере выхода потока многокомпонентной среды из профилированного зазора в концевой части каналов 8 возникает реактивная сила, под действием которой устройство 5 закручивания потока приводят во вращение, тем самым часть кинетической энергии потока многокомпонентной среды преобразуют в механическую работу. Крутящий момент с устройства 5 закручивания потока передают электрогенератору 12 для выработки электроэнергии.

Жидкую фракцию тяжелых углеводородов, движущуюся по периферии диффузорного участка 3 соплового канала, подают в кольцевую полость 10 с частью газа и далее направляют в полость узла отбора капель и/или твердых частиц (на изображениях не показана), при этом основной отсепарированный газовый поток подают внутрь полого конуса 11, откуда отбирают для дальнейшего использования.

Благодаря организации направленного отвода жидкой фракции к периферийным областям диффузорного участка 3 при помощи устройства 5 закручивания потока, процесс улавливания сконденсировавшихся компонентов при сверхзвуковых скоростях происходит с высокой эффективностью. При этом отсутствует необходимость в высокой степени закрутки многокомпонентной среды в конфузорном участке 2 соплового канала.

Использование предложенного способа сепарации потока многокомпонентной среды с целью отделения жидкой фракции углеводородных газов, а также более тяжелых углеводородов С5+ при подготовке природного газа в нефтегазовой промышленности позволит значительно повысить эффективность процесса улавливания сконденсировавшихся компонентов при сверхзвуковых скоростях, и тем самым снизить унос сконденсировавшейся фракции с основным газовым потоком, исключить необходимость в высокой степени закрутки потока многокомпонентной среды в конфузорном участке, при этом обеспечивается дополнительная возможность генерации электрической энергии.

1. Способ сепарации потока многокомпонентной среды, заключающийся в подаче потока многокомпонентной среды в устройство, содержащее сопловой канал с конфузорным и диффузорным участками и расположенным между ними критическим сечением, устройство закручивания упомянутого потока, установленное в указанном канале, узел отбора капель и/или твердых частиц, установленный в выходной части диффузорного участка, отличающийся тем, что устройство для закручивания потока многокомпонентной среды выполняют в виде профилированного тела вращения, торцы которого соединяют с основаниями входного и выходного конусов, причем наружную поверхность упомянутого тела вращения, предпочтительно, выполняют эквидистантной внутренней поверхности диффузорного участка соплового канала, при этом на поверхности указанного тела вращения размещают профилированные лопатки с образованием каналов между ними, преимущественно спиралевидных, причем в концевой части каналов выполняют профилированный зазор, при этом устройство закручивания потока многокомпонентной среды устанавливают коаксиально в диффузорном участке соплового канала, причем входной конус устройства для закручивания потока многокомпонентной среды располагают на расстоянии от критического сечения, при котором обеспечивают значение скорости потока многокомпонентной среды выше скорости звука, при этом в выходной части диффузорного участка соплового канала закрепляют полый конус с образованием кольцевой полости у внутренней поверхности диффузорного участка соплового канала, причем упомянутую полость соединяют с полостью узла отбора капель и/или твердых частиц, при этом при сепарации поток многокомпонентной среды под действием входного давления подают в сопловой канал, где потоку придают ускорение путем пропускания через конфузорный участок, после чего поток многокомпонентной среды пропускают через критическое сечение соплового канала, в котором обеспечивают увеличение скорости потока многокомпонентной среды до звуковых значений в данной среде, после чего поток многокомпонентной среды подают в диффузорный участок соплового канала, в котором обеспечивают значение скорости упомянутого потока выше скорости звука в данной среде, при этом в упомянутом потоке снижают статическое давление до минимальных значений, а статическую температуру - до значений ниже температуры точки росы, и обеспечивают конденсацию в дисперсном многокомпонентном газовом потоке жидкой фракции пропана, бутана и более тяжелых углеводородов С5+ в виде капель жидкости, после чего многокомпонентный газовый поток, имеющий сверхзвуковую скорость, подают на входной конус устройства закручивания потока, обеспечивая равномерность, сглаживание пульсаций, снижение газодинамического сопротивления движению и предотвращение отрыва упомянутого потока, который затем закручивают, производят его расширение и направляют жидкую фракцию тяжелых углеводородов в пристеночный слой на периферии диффузорного участка соплового канала под действием центробежной силы, а затем - в кольцевую полость с частью газа и далее - в полость узла отбора капель и/или твердых частиц, при этом основной отсепарированный газовый поток направляют к поверхности выходного конуса устройства закручивания потока, обеспечивая равномерность и снижение газодинамического сопротивления движению упомянутого потока, а затем - внутрь полого конуса, откуда его отбирают для дальнейшего использования.

2. Способ сепарации потока многокомпонентной среды, заключающийся в подаче потока многокомпонентной среды в устройство, содержащее сопловой канал с конфузорным и диффузорным участками и расположенным между ними критическим сечением, устройство закручивания упомянутого потока, установленное в указанном канале, узел отбора капель и/или твердых частиц, установленный в выходной части диффузорного участка, отличающийся тем, что устройство для закручивания потока многокомпонентной среды выполняют в виде профилированного тела вращения, торцы которого соединяют с основаниями входного и выходного конусов, причем наружную поверхность упомянутого тела вращения, предпочтительно, выполняют эквидистантной внутренней поверхности диффузорного участка соплового канала, при этом на поверхности указанного тела вращения размещают профилированные лопатки с образованием каналов между ними, преимущественно спиралевидных, причем между концевой частью упомянутых лопаток и внутренней поверхностью диффузорного участка соплового канала обеспечивают кольцевой зазор, а в концевой части каналов выполняют профилированный зазор, при этом устройство закручивания потока многокомпонентной среды устанавливают коаксиально в диффузорном участке соплового канала с возможностью радиального вращения вокруг своей продольной оси и соединяют с электрогенератором, причем входной конус устройства для закручивания потока многокомпонентной среды располагают на расстоянии от критического сечения, при котором обеспечивается значение скорости потока многокомпонентной среды выше скорости звука, при этом в выходной части диффузорного участка соплового канала закрепляют полый конус с образованием кольцевой полости у внутренней поверхности диффузорного участка соплового канала, причем упомянутую полость соединяют с полостью узла отбора капель и/или твердых частиц, при этом при сепарации поток многокомпонентной среды под действием входного давления подают в сопловой канал, где потоку придают ускорение путем пропускания через конфузорный участок, после чего поток многокомпонентной среды пропускают через критическое сечение соплового канала, в котором обеспечивают увеличение скорости потока многокомпонентной среды до звуковых значений в данной среде, после чего поток многокомпонентной среды подают в диффузорный участок соплового канала, в котором обеспечивают значение скорости упомянутого потока выше скорости звука в данной среде, при этом в упомянутом потоке снижают статическое давление до минимальных значений, а статическую температуру - до значений ниже температуры точки росы, и обеспечивают конденсацию в дисперсном многокомпонентном газовом потоке жидкой фракции пропана, бутана и более тяжелых углеводородов С5+ в виде капель жидкости, после чего многокомпонентный газовый поток, имеющий сверхзвуковую скорость, подают на входной конус устройства закручивания потока, обеспечивая равномерность, сглаживание пульсаций, снижение газодинамического сопротивления движению и предотвращение отрыва упомянутого потока, который затем тангенциально закручивают и производят его расширение, при этом устройство закручивания потока многокомпонентной среды приводят в радиальное вращение вокруг своей продольной оси под действием возникающих реактивных сил, причем крутящий момент от устройства закручивания потока многокомпонентной среды передают электрогенератору для выработки электроэнергии, после чего направляют жидкую фракцию тяжелых углеводородов в пристеночный слой на периферии диффузорного участка соплового канала под действием центробежной силы, а затем - в кольцевую полость с частью газа и далее - в полость узла отбора капель и/или твердых частиц, при этом основной отсепарированный газовый поток направляют к поверхности выходного конуса устройства закручивания потока, обеспечивая равномерность и снижение газодинамического сопротивления движению упомянутого потока, а затем - внутрь полого конуса, откуда его отбирают для дальнейшего использования.



 

Похожие патенты:

Изобретение может быть использовано в химической промышленности. Для получения аргона и азота подвергают технологический газ 22, содержащий NOx, стадии абсорбции NOx в средстве 23 абсорбции, получая азотную кислоту 24 и хвостовой газ 25, содержащий азот, аргон и остаточный NOx.

Изобретение относится к извлечению газоконденсаторных жидкостей. Способ извлечения газоконденсатных жидкостей (NGL), включающий: введение подаваемого потока природного газа в основной теплообменник, в котором подаваемый поток охлаждается и частично конденсируется, введение частично конденсированного подаваемого потока в холодный газожидкостный сепаратор, в котором частично конденсированный подаваемый поток разделяется на жидкую фракцию и газообразную фракцию, введение жидкой фракции в разделительную или ректификационную колонну, разделение газообразной фракции на первую часть и вторую часть, охлаждение первой части газообразной фракции в верхнем теплообменнике путем косвенного теплообмена с потоком верхнего газообразного продукта, отводимым из верхней части разделительной или ректификационной колонны, и введение охлажденной и частично конденсированной первой части газообразной фракции в разделительную или ректификационную колонну в точке, расположенной выше точки введения жидкой фракции в разделительную или ректификационную колонну, расширение второй части газообразной фракции и введение расширенной второй части газообразной фракции в разделительную или ректификационную колонну в точке, расположенной выше точки введения жидкой фракции в разделительную или ректификационную колонну, отведение потока жидкого продукта C2+ или C3+ (NGL) из нижней части разделительной или ректификационной колонны, отведение потока верхнего газообразного продукта из верхней части разделительной или ректификационной колонны, причем поток верхнего газообразного продукта обогащают метаном, использование потока верхнего газообразного продукта в качестве охлаждающей среды в верхнем теплообменнике и затем в основном теплообменнике, сжатие потока верхнего газообразного продукта в компрессорном агрегате остаточного газа с получением потока остаточного газа под давлением, расширение части потока остаточного газа под давлением и использование расширенного остаточного газа в качестве охлаждающей среды в верхнем теплообменнике и в основном теплообменнике, и сжатие расширенного остаточного газа, используемого в качестве охлаждающей среды, с образованием потока сжатого остаточного газа, а затем объединение потока сжатого остаточного газа с потоком верхнего газообразного продукта выше по потоку от компрессорного агрегата остаточного газа.
Изобретение относится к области разделения компонентов газовых смесей и может быть использовано для выделения одного или нескольких целевых компонентов или очистки газов от примесей. Способ очистки газов включает подачу исходного газового потока в сверхзвуковое сопло, расширение газа с охлаждением при его истечении со сверхзвуковой скоростью, последующее поступление газового потока в рабочую камеру, на вход которой дополнительно подают поток твердых частиц, десублимацию извлекаемых компонентов на поверхности твердых частиц и последующее разделение твердой и газовой фазы.

Изобретение относится к четырем вариантам установки переработки попутного нефтяного газа (ПНГ) с получением сжиженных углеводородных газов. Согласно одному из вариантов установка включает двухступенчатую компрессорную станцию для сжатия ПНГ и газа стабилизации, дефлегматор с внешним источником холода, сепаратор с линией вывода сжиженного углеводородного газа, соединенный линией вывода газа стабилизации с линией подачи ПНГ, а также блок осушки и/или очистки газа.

Изобретение относится к способу и установке для разделения газового потока, содержащего метан, C2 компоненты, C3 компоненты и более тяжелые углеводородные компоненты на летучую фракцию остаточного газа и сравнительно менее летучую фракцию, содержащую основную часть вышеуказанных компонентов. Способ включает следующие стадии: (a) обработка вышеуказанного газового потока для получения первого потока и второго потока; (b) расширение конденсированного первого потока до более низкого давления и поставка его в точку верхней подачи в дистилляционной колонне; (c) расширение охлажденного второго потока до более низкого давления и его поставка в промежуточную точку подачи сырья в дистилляционной колонне и (d) фракционирование расширенных дополнительно охлажденных первого потока и второго потока в дистилляционной колонне.

Изобретение относится к способам промысловой подготовки углеводородных газов и может быть использовано в нефтяной промышленности для переработки попутного нефтяного газа (ПНГ) с получением широкой фракции легких углеводородов (ШФЛУ). Установка оснащена двумя линиями подачи ПНГ - ПНГ первых ступеней сепарации и ПНГ концевой сепараторной установки.

Система сжижения позволяет последовательно или одновременно сжижать несколько сырьевых потоков углеводородов, имеющих различную нормальную температуру образования пузырьков, с минимальным мгновенным испарением. Сжижающий теплообменник имеет отдельные контуры для обработки нескольких сырьевых потоков.

Данное изобретение обеспечивает способ отделения СО2 от загрязненного потока сырья, содержащего углеводороды. Способ включает в себя получение мультифазного загрязненного потока сырья (100), содержащего углеводороды, который содержит по меньшей мере парообразную фазу, жидкую фазу и твердую фазу, создавая суспензионный поток сырья (120) из мультифазного потока сырья.

Данное изобретение обеспечивает способ отделения СО2 от загрязненного потока сырья, содержащего углеводороды. Способ включает в себя получение мультифазного загрязненного потока сырья (100), содержащего углеводороды, который содержит по меньшей мере парообразную фазу, жидкую фазу и твердую фазу, создавая суспензионный поток сырья (120) из мультифазного потока сырья.

Изобретение относится к оборудованию промысловой подготовки попутного нефтяного газа и может быть использовано в нефтяной промышленности. Изобретение касается установки низкотемпературной конденсации для подготовки попутного нефтяного газа, включающей расположенные на линии подачи попутного нефтяного газа узел охлаждения с теплообменником и холодильной машиной и сепаратор, соединенный с деметанизатором линиями подачи газа и остатка сепарации с редуцирующими устройствами, при этом низ деметанизатора соединен линией подачи деметанизированного конденсата с блоком фракционирования, оснащенным линиями вывода углеводородных фракций, и оснащен нагревателем, а верх деметанизатора оснащен линией вывода отбензиненного газа, соединенной с теплообменником.

Изобретение относится к промысловой подготовке природного газа к транспорту по магистральному газопроводу. Исходную смесь, состоящую из природного газа и жидких углеводородов, подвергают первичной сепарации с образованием газа первичной сепарации и жидкой фазы первичной сепарации, которую дегазируют с получением жидкой фазы первичной дегазации и газа первичной дегазации. Газ первичной сепарации охлаждают и подвергают вторичной сепарации с образованием жидкой фазы вторичной сепарации и газа вторичной сепарации, который детандируют с понижением температуры до -35°С…-45°С и выработкой электроэнергии, после чего в него добавляют газ первичной дегазации и жидкую фазу вторичной сепарации. Образовавшуюся смесь подвергают низкотемпературной сепарации, в результате которой получают жидкую фазу низкотемпературной сепарации и газ, который нагревают и направляют потребителю. Жидкие фазы первичной и низкотемпературной сепарации смешивают и направляют в узел подготовки конденсата с образованием газовой фазы и углеводородного конденсата, который направляют потребителю. Технический результат - повышение степени извлечения этана и пропан-бутанов в составе товарной жидкой продукции и снижение энергетических затрат. 2 з.п. ф-лы, 1 табл., 3 ил.
Наверх