Способ резекции костей с использованием персонифицированного шаблона

Изобретение относится к медицине, а именно к онкологии, ортопедии и травматологии, и может быть использовано для резекции костей. На предоперационном этапе с использованием компьютерного моделирования и 3D-печати планируют границы резекции и изготавливают персонифицированный шаблон для резекции, выполненный с поверхностью, конгруэнтной участку поверхности кости, включающему в себя планируемую линию ее резекции, определяемую в шаблоне выполненными в нем поперечными относительно соприкасающейся с костью поверхности отверстиями. Затем в соответствии с предоперационным планированием выполняют доступ к кости, при этом область кости, где запланировано выполнение резекции, скелетизируют и устанавливают на поверхность кости шаблон. После позиционирования шаблона в его отверстия вводят спицы с последующей перфорацией кости. После позиционирования всех спиц шаблон удаляют из операционной раны. Затем по спицам при помощи пил или долот выполняют резекцию кости и удаляют фрагмент кости, после чего удаляют спицы. Способ обеспечивает исключение попадания частиц шаблона в операционную рану во время резекции, возможность выполнения резекции не только пилами, но и при помощи долот, а также возможность позиционирования инструментария в различных плоскостях по отношению к поверхности резекции. 7 ил.

 

Изобретение относится к медицине, а именно к онкологии, ортопедии, травматологии, и предназначено для осуществления резекции костей.

Большое разнообразие операций, выполняющихся в стационарах различного хирургического профиля, требует использования большого количества хирургических инструментов. Сегодня в мировой и отечественной ортопедической практике широкое распространение приобретают технологии 3D-моделирования. 3D-моделирование позволяет создавать инструменты определенных размеров и параметров, необходимых для каждого конкретного случая. Все эти преимущества делают 3D-технологию печати хирургических инструментов перспективной и востребованной.

Хирургическое лечение больных с опухолями костей остается одной из самых сложных разделов клинической медицины. Результаты лечения зависят от радикальности выполненной операции и адекватной реконструкции дефекта костей. Для выполнения радикальных операций при резекциях костей применяются навигационные системы и персонифицированные шаблоны, созданные методом 3D печати.

Известно, например, применение навигационной системы в хирургическом лечении опухолей костей таза способ («Первый опыт применения навигационной системы в хирургическом лечении опухолей костей таза». Э.Р. Мусаев, С.А. Щинахин. Е.А. Сушенцов. А.К. Валиев. К.А. Борзов, М.Д. Алиев. Саркомы костей, мягких тканей и опухоли кожи - №3 - 2011. С10). Использование таких систем рассмотрено также в статье «Применение 3D-моделирования и компьютерной навигации в хирургическом лечении пациентов с доброкачественными опухолями и опухолеподобными заболеваниями трубчатых костей скелета», авторы: С.А. Приходько. Г.П. Котельников. А.Н. Николаенко, С.С. Чаплыгин, В.В. Иванов. Н.В. Попов, П.М. Зельтер, А.В. Колсанон (http://stm-ionrnal.ru/ru/numbers/2017/3/1368.html).

Применение навигационных систем ограничивается дороговизной оборудования и программного обеспечения. Фактором, ограничивающим применение данного метода, является позиционирование пациента в пространстве во время операции, которое должно соответствовать позиционированию на предоперационном этапе. Наиболее актуально это в случаях операций на костях таза, когда позиция пациента во время операции может меняться в пространстве.

В настоящее время хирурги имеют возможность легко преобразовать данные магнитно-резонансной томографии (МРТ) или данные компьютерной томографии (КТ) в набор данных, считываемый программой автоматизированного проектирования (CAD) и/или программой конечно-элементного моделирования (FEM), который затем может быть использован для создания, индивидуального имплантата. Эти данные можно использовать также для создания индивидуализированного набора инструментов или других хирургических устройств, которые предназначены для дополнения уникальной анатомии пациента, в том числе, персонифицированных хирургических шаблонов.

Преимуществом применения персонифицированных шаблонов является позиционирование с учетом индивидуальных анатомических ориентиров кости и не зависит от положения пациента в пространстве. Известен, например, способ резекции костей (RU 2629324 С1; МПК: A61B 17/56: 28.08.2017), включающий проведение в кость с патологическим очагом направляющих спиц под контролем компьютерной томографии, отличающийся тем, что направляющие спицы проводят через кость строго по границе патологического очага в предоперационном периоде, после чего, выполняя серию компьютерных томограмм, проектируют и печатают на 3D принтере индивидуальный стерсолитографический шаблон, имеющий сквозной паз с перемычками, соответствующий линии резекции кости; интраоперационно совмещают направляющие спицы с пазами шаблона для них; в шаблон вкручивают инструмент, имеющий с одного конца острый шип для фиксации в кости, а с другого Т-образную рукоятку для удержания шаблона; придавливают шаблон к кости и осциллирующей пилой или фрезой выполняют резекцию сегмента кости по ходу сквозного паза шаблона, поэтапно разрушая его перемычки; извлекают резецированный сегмент кости, потягивая на себя Т-образную рукоятку инструмента; не снимая шаблон, выполняют необходимей обработку костной полости, после чего шаблон и направляющие спицы демонтируют.

Известно использование персонифицированных шаблонов при тройной остеотомии таза у детей с диспластическим подвывихом бедра («Применение индивидуальных шаблонов при тройной остеотомии таза у детей с диспластическим подвывихом бедра (предварительные результаты)». П.И. Бортулев. С.В. Виссарионов. B.E. Басков. Д.Б. Барсуков, И.Ю. Поздники, М.С. Познович -

Применение традиционных шаблонов для резекций предполагает резекцию кости непосредственно по шаблону с применением осцилляторной или реципроктной пилы по направляющим, при этом не исключается попадание частиц шаблона в операционную рану. Кроме этого, при этом отсутствует возможность позиционирования инструментария в различных плоскостях по отношению к плоскости резекции, что особенно актуально при выполнении резекций костей сложных анатомических зон, когда доступ может быть ограничен мягкими тканями, сосудистыми, нервными структурами и другими анатомическими структурами.

Техническим результатом заявленного изобретения является исключение попадания частиц шаблона в операционную рану во время резекции. Кроме того, обеспечивается возможность выполнения резекции не только пилами, но и при помощи долот, а также возможность позиционирования инструментария в различных плоскостях по отношению к поверхности резекции.

Технический результат достигается тем, что способ резекции костей заключается в том, что на предоперационном этапе с использованием компьютерного моделирования и 3D-печати планируют границы резекции и изготавливают персонифицированный шаблон для резекции, выполненный с поверхностью, конгруэнтном участку поверхности кости, полностью включающему в себя планируемую линию ее резекции, определяемую в шаблоне выполненными в нем поперечными относительно соприкасающейся с костью поверхности отверстиями; затем в соответствии с предоперационным планированием выполняют доступ к кости, при этом область кости, где запланировано выполнение резекции, скелетизируют для установки персонифицированного шаблона и после адекватного позиционирования шаблона в его отверстия вводят спицы с последующей перфорацией кости; после позиционирования всех спиц шаблон удаляют из операционной раны; затем по спицам при помощи пил или долот выполняют резекцию кости и удаляют фрагмент кости, после чего удаляют спицы.

Краткое описание рисунков.

На фиг. 1 представлен пример персонифицированного шаблона 1, выполненного с поверхностью 2, конгруэнтной участку поверхности кости, на котором планируется выполнять ее резекцию. Отверстия 3 выполнены в шаблоне поперечными относительно соприкасающейся с костью поверхности 2 и определяют планируемую линию резекции кости, находящуюся в данном примере на пунктирной линии 4.

На фиг. 2 представлено позиционирование персонифицированного шаблона 1 на область кости, где будет выполняться ее резекция. Шаблон фиксируется установленными в отверстия шаблона спицами 5, которые определяют линию резекции, находящуюся на поверхности резекции, условно обозначенную пунктирной линией 6.

На фиг. 3 представлено завершение формирования линии резекции, где спицы 5 установлены во все отверстия шаблона 1.

На фиг. 4 представлена область кости после удаления шаблона, где пунктирной линией 4 условно обозначена линия резекции, определяемая спицами 5.

На фиг. 5 представлена область кости, после удаления шаблона, где удаляемый фрагмент 7 кости выделен красным цветом.

На фиг. 6 представлена область кости после отделения фрагмента 7, где 8 - определяемая спицами 5 поверхность, по которой выполнена резекция.

На фиг. 7 представлена область кости после удаления спиц из зоны резекции.

Изобретение используется следующим образом.

На предоперационном этапе с использованием компьютерного моделирования и 3D-печати планируют границы резекции и изготавливают персонифицированный шаблон для резекции. Шаблон может быть изготовлен и другими, отличными от 3D-печати, методами.

Как показано на фиг. 1 персонифицированный шаблон 1 для резекции кости выполнен с поверхностью 2, конгруэнтной участку поверхности кости, на котором предполагается выполнять резекцию. Эта поверхность включает в себя планируемую линию резекции кости, условно обозначенную на фиг. 1 пунктирной линией 4. Линия резекции определена в шаблоне 1 отверстиями 3, выполненными в шаблоне поперечными относительно поверхности 2, соприкасающейся с костью.

В соответствии с предоперационным планированием выполняют доступ к области кости. При этом область кости, где планируется выполнение резекции, скелетизируют для установки персонифицированного шаблона. После адекватного позиционирования шаблона, как показано на фиг. 2, в его отверстия вводят, как показано на фиг. 2 - фиг. 3. одну за другой спицы 5 соответствующего диаметра с последующей перфорацией кости. После позиционирования всех спиц шаблон, как показано на фиг. 4, удаляют из операционной раны. Затем по спицам 5 при помощи силового оборудования или долот выполняют, как показано на фиг. 5 - фиг. 6, резекцию кости и удаляют фрагмент 7 кости. После чего, как показано на фиг. 7, удаляют спицы.

Таким образом, применение персонифицированного шаблона обеспечивает его позиционирование с учетом индивидуальных анатомических ориентиров кости и не зависит от положения пациента в пространстве. При этом использование заявленного изобретения исключает наличие шаблона в момент резекции, что обеспечивает исключение возможности попадания частиц шаблона в операционную рану. При этом резекцию можно выполнять не только пилами, например осцилляторной или реципроктной, но и при помощи долот, что в отдельных случаях, например, когда поверхность резекции представляет собой более сложную, чем плоскость, поверхность, является более предпочтительным вариантом. Кроме того, поскольку поверхность резекции, по существу, определяется расположением спиц 5, которое в свою очередь, определяется направляющими отверстиями 4 в шаблоне 1, обеспечивается возможность позиционирования инструментария в различных плоскостях по отношению к поверхности резекции, что особенно актуально при выполнении резекций костей сложных анатомических зон, когда доступ может быть ограничен мягкими тканями, сосудистыми, нервными структурами и другими анатомическими структурами.

Таким образом, существенные признаки данного изобретения, обеспечивают достижение заявленного технического результата.

Способ резекции костей, заключающийся в том, что на предоперационном этапе с использованием компьютерного моделирования и 3D-печати планируют границы резекции и изготавливают персонифицированный шаблон для резекции, выполненный с поверхностью, конгруэнтной участку поверхности кости, включающему в себя планируемую линию ее резекции, определяемую в шаблоне выполненными в нем поперечными относительно соприкасающейся с костью поверхности отверстиями; затем в соответствии с предоперационным планированием выполняют доступ к кости, при этом область кости, где запланировано выполнение резекции, скелетизируют и устанавливают на поверхность кости шаблон; после позиционирования шаблона в его отверстия вводят спицы с последующей перфорацией кости; после позиционирования всех спиц шаблон удаляют из операционной раны; затем по спицам при помощи пил или долот выполняют резекцию кости и удаляют фрагмент кости, после чего удаляют спицы.



 

Похожие патенты:
Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано при лечении стабильного рассекающего остеохондрита коленного сустава. Осуществляют механическую стимуляцию репарации костной ткани в очаге остеохондрита путем выполнения остеоперфорационных каналов, направленных к центру очага остеохондрита, без повреждения хряща суставной поверхности мыщелка.

Изобретение относится к медицине, а именно челюстно-лицевой хирургии, и может быть использовано для изготовления многокомпонентного остеогенного трансплантата при хирургическом устранении врожденных и приобретенных дефектов кости челюстей. Готовят аутологичный клеточный пул стромально-васкулярной фракции следующим образом: методом туменисцентной липоаспирации производится забор 200 мл жировой ткани из области передней брюшной стенки, жировая ткань отмывается фосфатно-солевым раствором, подвергается ферментативной обработке раствором коллагеназы 1 типа, после чего выделяются клетки стромально-васкулярной фракции, которые помещаются в стерильные культуральные чашки Петри с ростовой средой, а затем ставятся в газовый CO2 инкубатор для культивирования при температуре +37°C и содержании CO2 - 5% на 7-14 дней до достижения монослоя, после чего клетки 2-3 кратно пассируют до достижения 50 млн клеток; у пациента производится пункция кубитальной вены, забор периферической крови в объеме 40 мл в 4-е пробирки с К2 ЭДТА, после чего готовят фибриноген аутологичной плазмы крови пациента и тромбоцитарную массу следующим образом: пробирки центрифугируются двукратно: первоначально с целью оседания эритроцитов и лейкоцитов, затем отбирается плазма крови из 4 пробирок в отдельную пробирку с получением фибриногена аутологичной плазмы крови пациента, далее вновь центрифугируют пробирку с получением 6 мл тромбоцитарной массы, к 2 мл фибриногена аутологичной плазмы крови пациента добавляется остеокондуктивный костнопластический материал животного происхождения, полученная смесь проходит стадию дегазации путем погружения в физиологический раствор при +37°С двукратно по 20 минут каждый в термостате, далее вносится аутологичный клеточный пул стромально-васкулярной фракции в объеме 15 млн клеток, затем вносится тромбоцитарная масса, добавляется 200 мкл стерильного раствора глюконата кальция, после чего проводится инкубация полученной смеси при температуре +37 градусов 15 минут, до формирования фибринового сгустка, с дальнейшей упаковкой в стерильный флакон, маркировкой и транспортировкой до операционной в термоконтейнере при комнатной температуре, в операционной за 40 минут до использования с целью хирургического устранения врожденных и приобретенных дефектов кости челюстей во флакон с указанной выше смесью вносится дентальный имплантат, при этом многокомпонентный остеогенный трансплантат включает: дентальный имплант - 10 об.%, аутологичный клеточный пул стромально-васкулярной фракции - 10 об.%, тромбоцитарная масса - 5 об.%, фибриноген аутологичной плазмы крови пациента - 20 об.%, гранулированный остеокондуктивный костнопластический материал животного происхождения - 55 об.%.

Изобретение относится к медицине, а именно челюстно-лицевой хирургии, и может быть использовано для предотвращения неконтролируемого изменения объема остеогенного трансплантата в послеоперационном периоде после проведения операции трансплантации по устранению врожденных и приобретенных дефектов кости челюстей.

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для лечения переломов плечевой кости у детей. Под контролем С-дуги сопоставляют отломки по латеральному или медиальному краю плечевой кости.

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для репозиции отломка при чрезмыщелковых переломах плечевой кости у детей. Введение стержня выполняется в согнутый под 90 градусов локтевой сустав через кожный покров задней поверхности локтевого сустава по срединной линии между проксимальным и дистальным отломками плечевой кости через локтевую ямку и управляя одним концом стержня, упираясь другим концом об вершину локтевой ямки проксимального отломка плечевой кости, одновременно придавливая стержень вниз и вызывая соскальзывания стержня от скатов локтевой ямки, достигается центрирование, дистракция, расклинивание и сопоставление дистального отломка к проксимальному.

Изобретение относится к области медицины и медицинской технике, а именно к экспериментальной травматологии и ортопедии, регенеративной медицине. Жидкостный ин виво биореактор для выращивания костной ткани между костными отломками при сегментарных дефектах длинных костей, превышающих критический размер, выполнен в виде круглой полой трубы из полиметилметакрилатного костного цемента, труба имеет утолщения из того же материала по краям обоих отверстий трубы, на концы трубы с двух сторон надеты воронки, выполненные из биоинертного натурального латекса, в отверстие полого конуса воронки большего радиуса основания заведен край трубы, а в свободное отверстие трубки воронки - конец отломка кости, концы проксимального и дистального костных отломков расположены напротив друг друга внутри трубы ин виво биореактора, на концах полых конусов воронок расположены неразрывно спаянные с усеченным конусом две манжеты воронок, выполненные из того же биоинертного натурального латекса и обращенные внутрь просвета воронок, во внутренней части стенки трубы ин виво биореактора имеется два дополнительных отверстия, расположенных напротив друг друга, в которые открываются просветы трубки из медицинской силиконовой резины и ввинчивающегося металлического штуцера, выполненного из титана, который соединен с концом одной из трубок из медицинской силиконовой резины, с внешнего конца две трубки из медицинской силиконовой резины через металлический штуцер соединены с адаптерами инфузионными, имеющими прямоточные каналы для герметичного соединения типа LUER lock со шприцем, подсоединяемым для смены растворов, часть одной трубок из медицинской силиконовой резины находится внутри стенки трубы из метилметакрилата ин виво биореактора и идет к противоположному внутреннему отверстию в стенке трубы, инфузионные адаптеры имеют защитные колпачки.
Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для подбора метафизарного фиксатора для замещения обширных дефектов большеберцовой кости при ревизионном эндопротезировании коленного сустава. При ревизионном эндопротезировании коленного сустава после удаления первично установленных компонентов интраоперационно оценивают расположение костного дефекта относительно кортикального края, наличие или отсутствие деформации костномозгового канала и остеосклероза проксимального отдела большеберцовой кости.
Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть применено для лечения импрессионных переломов мыщелков большеберцовой кости. После репозиции суставной поверхности через трепанационный канал в мыщелке большеберцовой кости под пальпаторным и визуальным контролем проводят восполнение дефекта цилиндрическими аутотрансплантатами из мыщелка бедренной кости.

Изобретение относится к медицине, а именно к травматологии и ортопедии. Устройство для определения уровня остеотомии и транспозиции большого вертела бедренной кости выполнено в виде накладки, с возможностью его плотной посадки на латеральную поверхность проксимального отдела бедренной кости, конгруэнтной ее форме.
Изобретение относится к медицине, а именно нейрохирургии, травматологии и ортопедии, и может быть использовано для хирургического вправления смещенного позвонка у пациентов с антеспондилолистезом в поясничном отделе позвоночника. Проводят задний оперативный доступ, мобилизацию позвонка, введение транспедикулярных винтов длиной 45-55 мм в тела позвонков, декомпрессию нервных структур с последующей редукцией смещения и возвращением позвонка в анатомически правильное положение.

Группа изобретений относится к медицине, а именно к шаблону для удаления и переноса костной ткани малоберцовой кости и сборочному набору, содержащему шаблон для удаления и переноса костной ткани малоберцовой кости. Шаблон имеет пластинчатую и изогнутую основную часть, предназначенную для наложения на костный участок.
Наверх