Солнечная гибридная газотурбинная энергетическая установка

Настоящее изобретение относится к энергетике и представляет собой установку, включающую газотурбинный двигатель с интегрированным фокусирующим солнечным коллектором и предназначенную для генерации электроэнергии и теплоты. Сущность солнечной гибридной газотурбинной энергетической установки, содержащей газотурбинный двигатель, включающий компрессор, регенератор, камеру сгорания и силовую турбину и работающий на нагрузку по циклу Брайтона с регенерацией теплоты, а также фокусирующий солнечный коллектор, который расположен между регенератором и камерой сгорания, заключается в том, что заявляемая установка дополнительно содержит турбокомпрессорный утилизатор, состоящий из турбины перерасширения, соединенной валом с дожимающим компрессором, а также регенератора и охладителя газов, расположенных между ними, при этом регенератор перенесен в состав турбокомпрессорного утилизатора, а турбокомпрессорный утилизатор установлен после силовой турбины и соединен с ней только газопроводом. В результате осуществления заявляемого решения повышается КПД газотурбинного двигателя и фокусирующего солнечного коллектора. 1 ил.

 

Настоящее изобретение относится к энергетике и представляет собой установку, включающую газотурбинный двигатель с интегрированным фокусирующим солнечным коллектором и предназначенную для генерации электроэнергии и теплоты.

Известна солнечная гибридная газотурбинная энергетическая установка (Kalathakis, С., Aretakis, N., Roumeliotis, I., Alexiou, A., and Mathioudakis, K. "Investigation of Different Solar Hybrid Gas Turbines and Exploitation of Rejected Sun Power." Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems. Seoul, South Korea. June 13-17, 2016. V003T06A017. ASME. https://doi.org/10.1115/GT2016-57700), содержащая газотурбинный двигатель (ГТД), работающий по циклу Брайтона с регенерацией теплоты (Р) и состоящий из последовательно установленных компрессора, регенератора, камеры сгорания, турбины и генератора и интегрированный фокусирующий солнечный коллектор (ФСК), расположенный между регенератором и камерой сгорания. По совокупности существенных признаков данная установка наиболее близка к заявляемому изобретению и принята за прототип.

Недостатком указанной выше установки является невысокий КПД газотурбинного цикла и низкая эффективность использования ФСК.

Известен газотурбинный двигатель (патент RU 8414 U1 от 12.03.1997 г.) с турбокомпрессорным утилизатором, содержащий газогенератор и силовой турбокомпрессорный агрегат, состоящий из вала, силовой турбины перерасширения, регенератора для подогрева газа перед камерой сгорания газогенератора, отопителя, радиатора и дожимающего компрессора, отличающийся тем, что в силовом турбокомпрессорном агрегате между силовой турбиной перерасширения и дожимающим компрессором установлен охладитель газа, а в газогенераторе между компрессором и камерой сгорания - подогреватель сжатого воздуха, которые связаны контуром промежуточного высокотемпературного теплоносителя, перекачиваемого посредством насоса, причем в контуре установлен охладитель теплоносителя, а также утилизационный теплообменник.

Недостатком указанного выше двигателя является невысокий КПД относительно КПД дизельных двигателей.

Задача изобретения - повышение КПД газотурбинного двигателя и фокусирующего солнечного коллектора.

Техническая задача достигается тем, что заявляемая установка, в отличие от прототипа, дополнительно содержит турбокомпрессорный утилизатор, состоящий из турбины перерасширения, соединенной валом с дожимающим компрессором, а также регенератора и охладителя газов, расположенных между ними, при этом регенератор перенесен в состав турбо-компрессорного утилизатора, а турбокомпрессорный утилизатор установлен после силовой турбины и соединен с ней только газопроводом.

Применение турбокомпрессорного утилизатора в газотурбинном двигателе позволяет увеличить перепад давлений в силовой турбине, что приводит к увеличению ее мощности при неизменном расходе топлива, а, следовательно, и к увеличению эффективного КПД всего двигателя. Кроме того, турбокомпрессорный утилизатор имеет встроенный регенератор теплоты отработанных газов, что снижает расход топлива на подогрев рабочего тела, и также приводит к увеличению эффективного КПД всего двигателя. Встроенный в турбокомпрессорный утилизатор охладитель отработанных газов может использоваться в качестве котла-утилизатора, который может передавать утилизируемую теплоту как для нужд теплоснабжения, увеличивая теплотехнический (общий) КПД двигателя, так и на утилизационную электрогенерирующую установку, увеличивая эффективный КПД двигателя. Поскольку температура газов за силовой турбиной в заявляемой энергетической установке ниже вследствие более высокого перепада давлений в силовой турбине, чем в ГТД с Р, то при прочих равных условиях средняя температура рабочего тела в ФСК снижается, следовательно снижаются потери теплоты в окружающую среду и эффективность использования ФСК возрастает.

В качестве ФСК могут применяться солнечные коллекторы с концентраторами различного типа (параболоидные, параболоцилиндрические, гелиостаты), обеспечивающими нагрев рабочих газов после регенератора ГТД.

Принципиальная схема солнечной гибридной газотурбинной энергетической установки (СГГЭУ) представлена на чертеже, где изображены: 1 - нагрузка; 2 - компрессор; 3 - камера сгорания; 4 - силовая турбина; 5 - турбина перерасширения; 6 - дожимающий компрессор; 7 - охладитель газов; 8 - регенератор; 9, 10 - клапаны; 11 - фокусирующий солнечный коллектор (ФСК). Установка содержит газотурбинный двигатель (ГТД) с турбокомпрессорным утилизатором (ТКУ) и регенератором 8 теплоты, имеющий повышенную эффективность по сравнению с регенеративным газотурбинным двигателем. ГТД с ТКУ представляет из себя роторный тепловой двигатель и включает компрессор 2, камеру сгорания (КС) 3, силовую турбину 4, турбину перерасширения (ТП) 5 и дожимающий компрессор (ДК) 6, регенератор 8 теплоты отработанных газов, расположенный после ТП 5, и встроенный охладитель отработанных газов (ОГ1) 7, расположенный между регенератором и ДК 6. Компрессор 2, камера сгорания 3, и силовая турбина 4 установлены соосно с нагрузкой 1. Подводящий и отводящий трубопроводы ФСК 11, снабженные запорными клапанами 9, врезаются в трубопровод, соединяющий регенератор 8 с КС 3, который снабжен запорным клапаном 10, расположенным между врезками подводящего и отводящего трубопроводов ФСК. Кроме того, турбокомпрессорный утилизатор, состоящий из турбины перерасширения 5, регенератора 8, охладителя газов 7 и дожимающего компрессора 6, соединен с силовой турбиной 4 только газопроводом.

Установка работает следующим образом.

В установке предусмотрено два режима:

1) с использованием ФКС при достаточно интенсивном солнечном излучении, в этом случае клапаны 9 открыты, а клапан 10 закрыт;

2) без использования ФСК при недостаточно интенсивном солнечном излучении (восход и заход Солнца, зимнее время), а также в вечернее и ночное время, клапан 10 открыт, а 9 - закрыты.

Рассмотрим первый режим. Работу СГГЭУ обеспечивают подачей в камеру сгорания 3 воздуха, сжатого компрессором 2 и предварительно нагретого в регенераторе 8 и ФСК 11. Нагретый таким образом воздух, а также в случае необходимости, и топливо подаются в камеру сгорания 3. Образовавшиеся в КС 3 рабочие газы поступают на турбину 4 приводящую нагрузку 1 и компрессор двигателя 2. После турбины 4 рабочие газы поступают в турбину перерасширения 5, приводящую дожимающий компрессор 6. Отработанные газы после ТП 5 поступают в регенератор 8, где охлаждаются, передавая теплоту воздуху перед ФСК 11. После регенератора отработанные газы проходят через охладитель газов 7, отдавая теплоту для нужд теплоснабжения, либо на утилизационную электрогенерирующую установку. Охлажденные в охладителе 7 отработанные газы сжимаются дожимающим компрессором 6 и выбрасываются в атмосферу.

Рассмотрим второй режим. Работу СГГЭУ обеспечивают подачей в камеру сгорания 3 воздуха, сжатого компрессором 2 и предварительно нагретого в регенераторе 8. Нагретый таким образом воздух, а также топливо подаются в камеру сгорания 3. Образовавшиеся в КС 3 рабочие газы поступают на турбину 4 приводящую нагрузку 1 и компрессор двигателя 2. После турбины 4 рабочие газы поступают в турбину перерасширения 5, приводящую дожимающий компрессор 6. Отработанные газы после ТП 5 поступают в регенератор 8, где охлаждаются, передавая теплоту воздуху перед КС 3. После регенератора 8 отработанные газы проходят через охладитель газов 7, отдавая теплоту для нужд теплоснабжения, либо на утилизационную электрогенерирующую установку. Охлажденные в охладителе 7 отработанные газы сжимаются дожимающим компрессором 6 и выбрасываются в атмосферу.

В результате осуществления заявляемого решения повышается, как КПД газотурбинного двигателя, так и фокусирующего солнечного коллектора.

Солнечная гибридная газотурбинная энергетическая установка, содержащая газотурбинный двигатель, включающий компрессор, регенератор, камеру сгорания и силовую турбину и работающий на нагрузку по циклу Брайтона с регенерацией теплоты, а также фокусирующий солнечный коллектор, который расположен между регенератором и камерой сгорания, отличающаяся тем, что содержит турбокомпрессорный утилизатор, состоящий из турбины перерасширения, соединенной валом с дожимающим компрессором, а также регенератора и охладителя газов, расположенных между ними, при этом регенератор встроен в состав турбокомпрессорного утилизатора, а турбокомпрессорный утилизатор установлен после силовой турбины и соединен с ней только газопроводом.



 

Похожие патенты:

Изобретение относится к электротехнике, в частности к электрическим машинам с постоянными магнитами и солнечными модулями. В предлагаемом магнитоэлектрическом генераторе, содержащем ротор с осью вращения с двумя скользящими контактами и постоянные магниты, ротор выполнен в виде цилиндра из электроизоляционного материала, на цилиндрической поверхности ротора параллельно его оси закреплены n секций из m изолированных плоских двойных ленточных проводников, плоскости которых перпендикулярны плоскости осевого сечения ротора, каждый изолированный плоский двойной ленточный проводник в секции состоит из двух изолированных друг от друга плоских ленточных проводников, соединенных последовательно, расположенных параллельно друг к другу в одной плоскости и установленных в плотном контакте между торцами постоянных магнитов, которые ориентированы по отношению друг к другу противоположными парами полюсов, все m изолированных плоских двойных ленточных проводников в n секциях соединены последовательно и образуют электрическую обмотку ротора, выводы электрической обмотки ротора присоединены к скользящим контактам, установленным вокруг оси ротора на его торце.

Изобретение относится к электротехнике, в частности к двигателям постоянного тока с постоянным магнитом, использующим солнечный фотоэлектрический генератор для питания обмотки ротора. Технический результат заключается в более полном использовании энергии солнечных элементов и увеличении их напряжения, а также в снижении потерь в роторе за счёт исключения скользящих контактов, увеличения количества постоянных магнитов, изменения конфигурации магнитного поля и использования импульсного питания электрических обмоток.

Изобретение относится к промышленной теплоэнергетике. Способ работы тригенерационной установки осуществляют путем нагрева низкокипящего теплоносителя за счет солнечного излучения, отделения капель жидкости и получения насыщенного пара низкокипящего теплоносителя, который направляют в турбодетандер, частичного вскипания образовавшегося после турбодетандера конденсата низкокипящего теплоносителя в испарителе, получения направляемого в производственное помещение охлажденного воздуха за счет испарения паров хладагента, нагрева воды электронагревателем.

Изобретение относится к области сельского хозяйства для использования в качестве основного или резервного электроснабжения электроэнергией технологических установок в отдаленных районах страны, использующих тепловую энергию солнечного излучения. Гелиотермоэлектрический электрогенератор снабжен баком-аккумулятором, в котором расположен теплообменник, соединенный через запорный вентиль, соединенный с блоком управления, прямым и обратным трубопроводами с приемной трубкой солнечного концентратора, термоэлектрической сборкой, блоком управления и аккумулятором.

Изобретение относится к электротехнике, в частности, к двигателям постоянного тока с постоянным магнитом, использующим солнечный фотоэлектрический генератор для питания электрических обмоток. Солнечный электромагнитный двигатель содержит ротор, фотоэлектрический генератор из скоммутированных солнечных элементов с p-n переходами, соединённый с электрическими катушками, статор, постоянный магнит, на краю диска ротора установлены n электрических катушек, n = 1, 2, 3… m натуральный ряд чисел, оси симметрии электрических катушек перпендикулярны плоскости диска, на статоре напротив каждой катушки установлены попарно с зазором 2n постоянных магнитов, где n = 1, 2, 3… m натуральный ряд чисел, в каждой паре магнитов плоскости сторон, содержащих северный и южный полюсы, параллельны друг другу и радиусу диска и ориентированы друг к другу противоположными полюсами с величиной зазора между магнитами 1-6 мм, одна из сторон каждой катушки ротора установлена в зазоре между магнитами в каждой паре магнитов, высота катушек ротора на 0,5-3 мм меньше величины зазора между магнитами, фотоэлектрический генератор установлен на роторе и соединён через диод, ёмкость и устройство импульсной коммутации с электрическими катушками ротора, устройство импульсной коммутации содержит датчик контроля расположения катушки ротора в зазоре магнитов статора и коммутатор подачи импульсного тока и напряжения на электрические катушки ротора от фотоэлектрического генератора.

Изобретение относится к высотным солнечным аэростатно-мобильным электростанциям (САМЭ) энергоснабжения наземных потребителей. САМЭ включает в себя летательный аппарат легче воздуха, размещенный выше облачного слоя атмосферы, фотоэлектрические преобразователи (ФЭП) солнечного излучения, систему дистанционной передачи энергии и наземный пункт приема энергии (НППЭ).

Изобретение относится к электрическим тяговым системам транспортных средств. Способ генерации мощности для работы транспорта с электрическим приводом заключается в том, что используют тепловую мощность окружающей среды различных видов: воздуха, воды, грунта, солнечного излучения и комбинации видов, которую собирают в конструктивных элементах транспорта, контактирующих с окружающей средой, посредством рабочего тела, находящегося в специальных полостях данных конструктивных элементов.

Изобретение относится к области солнечной и солнечно-ветровой энергетики, предназначенной для преобразования энергии солнца и ветра в электрическую. Возобновляемый источник энергии содержит стойку или ветроустановку, силовые растяжки, солнечные модули, инвертор, накопители энергии, контроллер, электрические цепи, электроаппаратуру, контейнер, входной и выходной электрические кабели, имеет солнечные модули, закрепленные на силовых растяжках при помощи узлов крепления и снабженные дополнительными растяжками.

Изобретение относится к области электротехники и может быть использовано в электрических машинах с постоянными магнитами и солнечными модулями. Технический результат заключается в более полном использовании энергии солнечных модулей и увеличении их мощности, в снижении ЭДС самоиндукции и реакции торможения ротора при взаимодействии с магнитным полем статора.

Изобретение относится к электротехнике, к двигателям постоянного тока с постоянным магнитом, использующим солнечный генератор для питания обмотки ротора. Технический результат заключается в более полном использовании площади солнечных элементов и увеличении их мощности, а также в снижении э.д.с.

Изобретение относится к гелиосистемам генерации электроэнергии, предназначено для преобразования солнечной энергии в электроэнергию и может быть использовано в системах электроснабжения. Солнечная электростанция включает солнечные концентраторы, соединенные через масляный насос с теплообменником, к теплообменнику через трубопровод подключена паровая турбина, соединенная с конденсатором, конденсатор соединен с теплообменником через водяной насос, паровая турбина соединена с электрогенератором, подключенным к электролизеру, который последовательно соединен с баком-накопителем водорода, водородным насосом и камерой сгорания, камера сгорания соединена через трехходовой клапан с паровой турбиной и теплообменником, причем солнечные концентраторы выполнены параболоцилиндрической формы.
Наверх