Способ выращивания монокристаллов теллурида кадмия

 

Изобретение относится к способам получения полупроводникового материала, может быть использовано в электронной технике, обеспечивает уменьшение плотности дислокаций, исключение двойников и упрощение способа. Способ включает нагрев поликристаллической загрузки и кадмия, расположенных в разных секциях герметичного контейнера. Загрузку расплавляют, выдерживают расплав, после чего охлаждают. При охлаждении секцию с расплавом поддерживают в безградиентном температурном поле, а температуру в секции с кадмием - равной 755 - 765 С. Охлаждение ведут со скоростью, меньшей или равной 3С/ч. Получены монокристаллы площадью 15-20 см2, ориентированные по плоскости (III) с плотностью дислокаций 1102-1103 см+2. 1 табл.

Изобретение относится к способам получения полупроводникового материала, конкретнее к выращиванию монокристаллов теллурида кадмия, и может быть использовано в электронной технике. Цель изобретения - уменьшение плотности дислокаций, исключение двойников в кристаллах и упрощение процесса. П р и м е р. Кварцевую ампулу, графитизированную в потоке ацетона, полуцилиндрической формы диаметром 40 мм и длиной 150 мм загружают поликристаллическим теллуридом кадмия (320 г). Далее ампулу помещают в кварцевый контейнер, состоящий из широкой части (длина 400 мм) и узкой части (длина 370 мм). В широкой части расположена графитизированная ампула с теллуридом кадмия, в узкой части - избыточный кадмий ( 2,4 г). Контейнер после откачки до 10-5 мм рт. ст. герметично запаивают и помещают в установку направленной кристаллизации, состоящей из двух трехзонных печей. Далее поликристаллическую загрузку расплавляют, доводя температуру печи до 1100оС. Температуру другой печи, в которой помещается отросток контейнера с избыточным кадмием, устанавливают равной 760оС, причем эта температура выбирается такой, чтобы согласно диаграмме состояния состав жидкой и твердой фаз отличался минимально. В печи с контейнером создается безградиентное температурное поле, аксиальное и радиальное распределение температуры которого измерено с точностью 0,05оС. Расплав выдерживают в печи при температуре плавления в течение 2 ч, после чего производят охлаждение контейнера с расплавом. Указанные температуры в обеих печах поддерживаются с точностью 0,25оС и измеряются посредством Pt-Pt/Rh 13% термопары. В данном конкретном примере скорость охлаждения расплава составляет 0,5оС/ч и устанавливается задатчиком ЗТА-1. Другие примеры осуществляли аналогично примеру 1, при этом они отличались лишь скоростью охлаждения. Зависимость качества структуры и ориентации выращенных кристаллов от изменения скорости охлаждения расплава приведена в таблице. Как видно из данных, приведенных в таблице, отсутствие двойников и задания ориентации обеспечиваются при скоростях охлаждения, меньших или равных 10оС/ч. При скорости охлаждения, равной или меньшей 3оС/ч, уменьшается плотность дислокации до уровня 1 102-1 103 см-2. Таким образом, при предлагаемом режиме достигается высокое структурное качество кристаллов. Кроме того, предложенный способ позволяет существенно сократить потери материала за один технологический цикл в связи с тем, что поверхность расплава при кристаллизации образует кристаллографическую плоскость (III). Предложенный способ позволяет получить монокристаллы теллурида кадмия площадью 15-20 см2, ориентированные в направлении (III), толщина которых определяется высотой контейнера (в примере 15-20 мм). Процесс прост и не требует сложной аппаратуры и регулировки. (56) Авторское свидетельство СССР N 1150994, кл. С 30 В 11/02, 29/48, 1983.

Формула изобретения

СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ТЕЛЛУРИДА КАДМИЯ, включающий нагрев поликристаллической загрузки и кадмия, расположенных в разных секциях герметичного контейнера, плавление загрузки, выдержку расплава и его последующее охлаждение с заданной скоростью, отличающийся тем, что, с целью уменьшения плотности дислокаций, исключения двойников в кристаллах и упрощения процесса, при охлаждении в секции с расплавом поддерживают безградиентное температурное поле, а температуру в секции с кадмием 755 - 765oС и охлаждение ведут со скоростью, равной или меньшей 3 град/ч.

РИСУНКИ

Рисунок 1

MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Номер и год публикации бюллетеня: 8-2000

Извещение опубликовано: 20.03.2000        




 

Похожие патенты:

Изобретение относится к технологии получения сцинтилляционного материала на основе щелочНо-галоидных монокристаллов , может быть использовано в химической промышленности и обеспечивает улучшение спектрометрических характеристик материала за счет снижения концентрации продуктов неполного сгорания органических примесей

Изобретение относится к выращиванию монокристаллов из расплава, которые используют в сцинтилляционных счетчиках для регистрации и спектрометрии ионизирующих излучений

Изобретение относится к способам получения сцинтилляционных щелочно-галоидных кристаллов и обеспечивает повышение производительности процесса при сохранении оптического качества кристаллов, а также одновременное получение сцинтилляционного элемента для низкофонового спектрометра, содержащего световод

Изобретение относится к способам выращивания монокристаллических образцов со структурой беррила и может быть использовано в электронной и ювелирной промышленности

Изобретение относится к получению сложных полупроводниковых соединений типа A3B5 и A4B6

Изобретение относится к металлургии, преимущественно к технологии получения литых монокристаллических заготовок из сплавов, содержащих Fe-Co-Ni-Al-Cu-Ti (ЮНДКТ)

Изобретение относится к выращиванию синтетических монокристаллов и промышленно применимо при изготовлении ювелирных изделий, а также высокопрочных оптических деталей (небольших окон, линз, призм и т.п.)

Изобретение относится к получению монокристаллических тиоиндатов щелочных металлов структуры АIBIIICVI 2, в частности монокристаллов соединения LiInS2, используемого в лазерной технике в качестве преобразователя излучения

Изобретение относится к области выращивания монокристаллов замораживанием при температурном градиенте на затравочный кристалл без использования растворителей и промышленно применимо для выращивания высококачественных монокристаллов большого диаметра, в том числе в условиях невесомости

Изобретение относится к выращиванию монокристаллов замораживанием при температурном градиенте на затравочный кристалл без использования растворителей и промышленно применимо для выращивания высококачественных монокристаллов большого диаметра, в том числе в условиях невесомости
Наверх