Способ приготовления катализатора для очистки выхлопных газов двигателей внутреннего сгорания

 

Изобретение относится к способам получения катализаторов для очистки выхлопных газов двигателей внутреннего сгорания. Способ предусматривает использование в качестве носителя более дешевой жаропрочной фольги с содержанием хрома 15 - 23% и алюминия 4,5 - 5,1% с покрытием из оксида алюминия, нанесенного в растворе едкого натра с концентрацией 0,7 - 1,5% при непосредственном растворении в нем алюминиевой стружки с последующей сушкой и прокалкой. На основе указанного носителя с покрытием из оксида алюминия готовится катализатор, содержащий в качестве активных компонентов платину и родий, нанесенных методом пропитки из водных растворов их солянокислых солей, которые восстанавливают в токе газообразного водорода.

Изобретение относится к способам получения катализаторов очистки выхлопных газов двигателей внутреннего сгорания (ДВС).

Известны способы приготовления катализаторов на носителях сотовой структуры с множеством отверстий в направлении течения газового потока. Исходная удельная поверхность таких блочных носителей мала (0,01-0,65 м2/г) и катализаторы на их основе обладают низкой каталитической активностью.

Для увеличения исходной удельной поверхности металлических и керамических блочных носителей широко практикуется нанесение промежуточной подложки. Известны катализаторы очистки ОГ ДВС на металлических и керамических носителях блочной структуры, поверхность которых увеличивают различными способами. Так в [1] катализатор приготовлен на носителе из алюминийсодержащего сплава железа, который подвергают термообработке с образованием на поверхности покрытия из тугоплавкого оксида алюминия и оксида переходного металла (например, оксид железа), активные вещества наносят на образующееся оксидное покрытие. Промежуточное покрытие, полученное описанным способом, не обладает необходимой удельной поверхностью, отшелушивается и в результате катализатор не имеет достаточной эффективности и долговечности.

В [2] описан способ нанесения покрытия из суспензии оксида алюминия, в которой также диспергированы и частицы металлов (платина, палладий, их сплавы). Эту суспензию наносят на инертный носитель, затем удаляют воду в результате сушки и прокаливания. Такой способ не обеспечивает прочного сцепления покрытия с поверхностью инертного носителя, а наносимые указанным образом металлические частицы платины и палладия обладают низкой каталитической активностью.

Описанный в [3] способ приготовления катализатора очистки ОГ ДВС заключается в том, что металлический каркас из углеродистой стали без легирующих добавок покрывают эластичной грунтовкой из волокон силиката алюминия, которую сушат при 100-250оС, а затем на нее наносят слой гидроокиси алюминия, далее высушивают при 100-250оС и прокаливают при 800-1200оС. Полученный слой пропитывают одним или несколькими металлами платиновой группы и прокаливают. Этот способ включает много стадий, является нетехнологичным. Прокаливание промежуточного оксидного покрытия при 1200оС приводит к образованию корунда ( - Al2O3) с малой удельной поверхностью. Применение металлического носителя из углеродистой стали снижает ресурс работы катализатора, приготовленного на таком носителе, при жестких режимах эксплуатации, например при очистке отходящих газов ДВС.

Наиболее близким по технической сущности и достигаемому эффекту является способ (прототип), описанный в [4] , где с целью получения блочного катализатора очистки ОГ ДВС исходный монолитный носитель многократно обрабатывают глиноземной суспензией, в которой диспер- гирован порошок оксида алюминия, содержащий и оксид церия. (Оксид церия образуется путем пропитки порошка оксида алюминия раствором соли церия и прокаливания). Обработанный суспензией носитель прокаливают и на оксидно-алюминиевое покрытие осаждают активные вещества - металлы платиновой группы. Для этого на промежуточное покрытие наносят водный раствор каждого осаждаемого соединения благородного металла (платина, родий) отдельно и подвергают его термическому разложению.

Основным недостатком такого способа приготовления катализатора (суспензионного) является низкая прочность сцепления покрытия из оксида алюминия с поверхностью инертного носителя, неравномерность покрытия, вследствие чего снижается ресурс работы катализатора. Массовое количество наносимого оксидного покрытия при этом не превышает 10% , что явно недостаточно для получения требуемых удельной поверхности и эффективности катализатора. Кроме того, раздельное нанесение благородных металлов на носитель с промежуточным покрытием значительно усложняет технологию. Описанный способ приготовления катализатора является нетехнологичным, многостадийным и трудоемким.

Цель изобретения - упрощение и удешевление технологии приготовления катализатора очистки выхлопных газов ДВС.

Существо предлагаемого способа получения катализатора заключается в следующем.

В качестве инертного носителя берут стальную фольгу с содержанием хрома 15-23% , алюминия 1-8% , так как такое содержание этих компонентов улучшает окислительную стойкость фольги. Но поскольку с увеличением содержания хрома и алюминия возрастает дороговизна и усложняется получение сплава, предпочтительно используют стальную фольгу с содержанием хрома 15-20% , алюминия 4,5-5,1% . Стальную фольгу гофрируют, сворачивают в блок и подвергают окислению на воздухе при 900-950оС.

На термообработанный блок наносят покрытие из оксида алюминия в 0,7-1,5% -ном растворе едкого натра при непосредственном растворении в нем алюминиевой стружки при 60-80оС с последующей промывкой, сушкой и термообработкой при 500оС.

Покрытие из оксида алюминия пропитывается водными растворами солей Ce(NO3)2, H2PtCl6 и RhCl3 с последующей сушкой и восстановлением активных веществ (Pt и Rh) водородом.

Заявляемый способ позволяет получить катализатор, обладающий высокой активностью в процессах очистки газовых выбросов от CO, NOx, CHx.

Равномерно нанесенная, прочносвязанная с инертным носителем подложка оксида алюминия, обладающая высокой термостабильностью и ударовибропрочностью, обеспечивает необходимый ресурс работы катализатора - 80.000 км, что подтверждается испытаниями на полигоне НАМИ.

Предлагаемый способ получения катализатора позволяет упростить технологию изготовления носителя с покрытием из оксида алюминия, заранее регулировать толщину оксидного покрытия, а также исключить при этом выделение вредных органических и неорганических примесей.

Полученное покрытие из оксида алюминия обладает высокой удельной поверхностью (30-40 м2/г) в пересчете на общий вес инертного носителя с покрытием, при содержании оксида алюминия от 10-30 мас. % , что обеспечивает необходимые эксплуатационные характеристики катализаторов.

Уменьшение количества оксида алюминия приводит к снижению активности катализаторов, а увеличение - к увеличению газодинамического сопротивления.

П р и м е р 1. Из гофрированной фольги марки Х20Ю5 толщиной 0,05 мм и шириной 30 мм путем наложения гофрированной и гладкой лент сворачивают блок диаметром 25 мм. Блок окисляют на воздухе при 900-950оС в течение 20 ч, обрабатывают 10% -ным раствором едкого натра при кипячении в течение 1 ч, промывают и сушат при 100-120оС.

Блок массой 9,6 г помещают в стакан со 100 мл 0,7% -ного раствора едкого натра, нагревают содержимое на водяной бане до 60-80оС, добавляют 2 г алюминиевой стружки (сод. Al - 99,0-99,9% ) и выдерживают на водяной бане 5 ч, а затем при комнатной температуре 15-20 ч. Блок вынимают, тщательно промывают, сушат при 100-120оС 2 ч и прокаливают при 250оС 2 ч и при 500оС 3 ч.

Блок с покрытием из оксида алюминия весит 10,7 г, содержание Al2O3 составляет 10 мас. % .

В 25 мл 1% -ного раствора Ce(NO3)2 помещают блок, оставляют на 15-20 мин - раствор полностью всасывается в каналы блока. Затем блок сушат при 100-120оС 2 ч и прокаливают при 450оС 3 ч.

После прокалки блок весит 10,81 г и содержит CeO2 10% в расчете на вес покрытия из Al2O3 (1,1 г), что составляет 1,0% от массы блока.

В 100 мл дистиллированной воды растворяют 29 мг H2PtCl6 6H2O и 5,8 мг RhCl3 4H2O, помещают блок и выдерживают в растворе при комнатной температуре 20-24 ч. Блок вынимают и сушат при 100-120оС 2 ч.

Восстановление активных компонентов ведут в водороде при температуре 400оС 5 ч.

Полученный катализатор весит 10,82 г и содержит: Al2O3 - 10 мас. % CeO2 - 1,0 мас. % Pt - 0,1 мас. % Rh - 0,02 мас. % остальное сталь марки Х20Ю5, сод. Cr - 20% сод. Al - 5,1% П р и м е р 2. Аналогично примеру 1, но для увеличения количества покрытия из оксида алюминия, после выдержки блока при комнатной температуре 15 ч, стакан с блоком вновь ставят на водную баню и цикл повторяют. Далее, как в примере 1. После прокалки блок весит 11,99 г и содержит 20 мас. % Al2O3.

Для получения катализатора состава по примеру 1, количество соли Ce(NO3)2 в растворе удваивают. Далее по примеру 1. Блок весит 12,2 г и содержит CeO2 10 мас. % по отношению к массе Al2O3 (2,39 г).

Количество солей драгметаллов составляет: 32,4 мг - H2PtCl6 6H2O и 6,5 мг - RhCl3 4H2O на тот же объем раствора. Далее по примеру 1.

Полученный катализатор весит 12,23 г и содержит: Al2O3 - 20 мас. % CeO2 - 1,9 мас. % Pt - 0,1 мас. % Rh - 0,02 мас. % остальное - сталь Х20Ю5 с содержанием Cr 20% , Al 4,5% .

П р и м е р 3. Аналогично примеру 1, но с целью увеличения количества оксида алюминия, растворение алюминиевой стружки ведут в 1,5% -ном растворе NaOH и количество стружки увеличивают до 4 г, блок выдерживают в растворе при 60-80оС 5 ч и 15 ч при комнатной температуре, затем этот цикл повторяют, далее как в примере 1.

После термообработки блок с покрытием из оксида алюминия весит 13,7 г, где масса покрытия - 4,1 г (Al2O3), что составляет 30 мас. % от массы всего блока. Количество соли в растворе увеличивают в 3 раза. Далее по примеру 1.

Блок после пропитки солью церия, сушки и прокалки весит 14,2 г и содержит 10 мас. % CeO2 по отношению к массе покрытия из Al2O3 (к массе всего блока содержание CeO2 2,9 мас. % ). Количество солей платины и родия в примере 3 составляет:
H2PtCl 6H2O - 38,00 мг
RhCl3 4H2O - 7,54 мг Растворение солей и пропитка блока проводится как в примере N 1.

Полученный катализатор весит 14,21 г и содержит:
Al2O3 - 30 мас. %
CeO2 - 2,9 мас. %
Pt - 0,1 мас. %
Rh - 0,02 мас. % остальное - сталь Х20Ю5 (содержание Cr 20% , Al 4,95% ).

П р и м е р 4. Аналогично примеру 1, но на 100 мл 0,7% -ного раствора берут 1 г алюминиевой стружки. Полученный блок весит 10,2 г, покрытие из Al2O3 весит 0,6 г, что составляет 5,9% от массы блока. Количество Ce(NO3)2 для пропиточного раствора берут в 2 раза меньше, чем в примере 1.

После пропитки раствором Ce(NO3)2 и термообработки блок весит 10,26 г, количество СeO2 в нем 10% (на все покрытия из Al2O3) или 0,58% (на массу блока). Количество солей драгметаллов составляет:
H2PtCl6 6H2O - 27,1 мг
RhCl3 4H2O - 5,3 мг Пропитка солями драгметаллов и восстановление аналогично примеру 1.

Катализатор весит 10,27 г и содержит:
Al2O3 - 5,9 мас. %
CeO2 - 0,58 мас. %
Pt - 0,1 мас. %
Rh - 0,2 мас. % остальное - сталь Х20Ю5 (содержание Cr 20% , Al 5% ).

П р и м е р 5. Аналогично примеру 1, но растворение 4 г алюминиевой стружки ведут в 1,5% -ном растворе NaOH и цикл повторяют 3 раза. Все остальное, как в примере 1. Блок весит 16,7 г, привес Al2O3 составляет 7,1 г (или 42,5 мас. % 40% ).

Количество соли Сe(NO3)2 увеличивают в 4 раза по сравнению с примером 1 и далее по примеру N 1. Блок весит 17,4 г и содержит 10 мас. % CeO2 на вес Al2O3 и 4,1 мас. % на вес всего блока.

Количество солей драгметаллов составит:
H2PtCl6 6H2O - 46,2 мг
RhCl3 4H2O - 9,2 мг на то же количество раствора, далее по примеру 1.

Полученный катализатор весит 17,41 г и содержит:
Al2O3 - 40,0 мас. %
CeO2 - 4,1 мас. %
Pt - 0,1 мас. %
Rh - 0,02 мас. % остальное - сталь марки Х20Ю5 с содержанием Cr 20% , Al 5% .

П р и м е р 6. Как в примере 1, но вместо стальной фольги марки Х20Ю5 берут стальной блок весом - 9,6 г из стали Х15Ю5.

Полученный катализатор весит - 11,5 г и содержит:
Al2O3 - 10,0 мас. %
CeO2 - 1,0 мас. %
Pt - 0,1 мас. %
Rh - 0,02 мас. % остальное - сталь марки Х15Ю5 с содержанием Сr 15% , Al 5% .

П р и м е р 7. Как в примере 1, но вместо Х20Ю5 берут сталь Х23Ю5.

Полученный катализатор весит 11,5 г и содержит:
Al2O3 - 10,0 мас. %
CeO2 - 1,0 мас. %
Pt - 0,1 мас. %
Rh - 0,02 мас. % остальное - сталь марки Х23Ю5.

Активность катализаторов по примерам 1 - 7 испытывалась в проточной установке в процессе трехкомпонентной очистки газа состава: CO - 0,4 об. % , NO - 0,1 об. % , C3H6 - 0,076 об. % , остальное азот, при объемной скорости 30000 ч-1.

Данные испытаний приведены в таблице. Активность катализаторов возрастает в ряду N 4 N 7 = N 6 N 1 N 2 N 3 = 5 и практически одинакова у образцов N 1, N 6, N 7, что свидетельствует о том, что состав фольги не влияет на активность катализатора, что позволит применить фольгу с меньшим содержанием хрома (15-20% ), которая дешевле и проще в изготовлении.

Активность образцов N 3 и N 5 практически одинакова, что позволяет сделать вывод о том, что содержание оксида алюминия в количестве 10-30 мас. % является оптимальным для создания эффективного катализатора очистки отходящих газов ДВС.

В заводских условиях были изготовлены полноразмерные образцы катализаторов на металлическом блочном носителе по заявляемому способу и проведены дорожные испытания на легковом автомобиле ГАЗ-24 на полигоне НАМИ. Катализатор показал высокую эффективность очистки выхлопных газов, требуемый ресурс работы и был рекомендован к практическому использованию. (56) Патент США N 4096095, кл. В 01 J 21/04, 1979.

Патент США N 4132673, кл. B 01 J 21/04, опублик. 1979.

Заявка ФРГ N 2411378, кл. B 01 J 35/02, 1979.

Патент США N 4587231, кл. B 01 J 21/04, 1986.


Формула изобретения

СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОЧИСТКИ ВЫХЛОПНЫХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ, включающий нанесение на инертный носитель слоя оксида алюминия с последующей его пропиткой водными растворами солей церия, платины, родия, сушкой и восстановлением, отличающийся тем, что в качестве носителя используют стальную гофрированную и свернутую в блок фольгу с содержанием хрома 15 - 23 мас. % и алюминия 4,5 - 5,1 мас. % , нанесение слоя оксида алюминия проводят в водном растворе едкого натра с концентрацией 0,7 - 1,5% при непосредственном растворении алюминия с последующей сушкой и прокалкой, а восстановление платины и родия ведут в токе водорода.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к способам получения катализаторов на основе соединений меди, цинка, алюминия для химических процессов: конверсии оксида углерода с водяным паром, синтеза метанола, кислородной конверсии оксида углерода очистке сбросных газов от оксида углерода и органических примесей

Изобретение относится к палладиевым катализаторам на гранулированном углеродном носителе для процессов гидроочистки, в частности для жидкофазного процесса гидроочистки терефталевой кислоты (ТФК) от примесей n-карбоксибензальдегида (n-КБА)

Изобретение относится к получению карбоновых кислот C2 - C11 или соответствующих им сложных эфиров путем взаимодействия монооксида углерода по крайней мере с одним реагентом, выбираемым среди спиртов, алкилгалогенидов, простых или сложных эфиров, в присутствии каталитической системы, включающей по крайней мере одно родиевое соединение и по крайней мере одно иридиевое соединение, или по крайней мере одно соединение, включающее оба этих металла, и по крайней мере один галогенсодержащий промотор
Наверх