Камера жидкостного ракетного двигателя

 

Камера жидкостного ракетного двигателя с регенеративной системой охлаждения включает реактивное сопло и насадок. Насадок пристыкован к соплу, входящему в состав камеры жидкостного ракетного двигателя, без изменения исходной конфигурации сопла. Продольный контур насадка выполнен по кривой, описываемой полиномом третьей степени. Толщина стенки насадка определена как ст = kхим, где k - коэффициент запаса материала по толщине, учитывающий величину газопроницаемости материала, хим - глубина химического разрушения материала, определяемая исходя из температуры продуктов сгорания и концентрации кислородосодержащих соединений в продуктах сгорания с учетом теплового пограничного слоя (тепловой завесы), ранее сформировавшегося вблизи стенки сопла. Изобретение позволяет повысить энергетические характеристики жидкостных ракетных двигателей при одновременном снижении массы, габаритов и стоимости конструкции. 1 ил.

Изобретение относится к камерам ракетных двигателей на жидком топливе, которые включают в свою конструкцию реактивные сопла, геометрическая степень расширения которых увеличивается без изменения конструкции жидкостного ракетного двигателя (ЖРД). Камера с соплом большой степени расширения потока ЖРД предназначена для повышения удельной тяги существующих ЖРД и может быть использована в космических аппаратах, разгонных блоках, средствах выведения для доставки полезного груза в космическое пространство.

Известен двигатель RL10B-2, который имеет сопло, состоящее из двух частей: одна часть имеет регенеративную систему охлаждения, вторая часть формируется радиационно-охлаждаемыми насадками в виде конуса из углерод-углеродного композиционного материала. (См. R.A.ELLIS et al., Testing of the RL10B-2 Carbon-Carbon Nozzle Extension, AIAA Paper, 98-3363).

В этом устройстве газодинамический контур формируется в виде профилированного участка в зоне регенеративного охлаждения и в виде прямого кругового конуса в зоне радиационного охлаждения. Однако использование конического контура сопла по сравнению с профилированным, как известно из теории ЖРД, обладает большей длиной, массой и поверхностью, омываемой продуктами сгорания.

Предлагаемое изобретение решает задачу повышения энергетических характеристик существующих ЖРД при одновременном снижении массы конструкции, габаритов и значительном снижении стоимости реализации по сравнению с вновь создаваемыми ЖРД, обеспечивающими такой же уровень характеристик.

Для достижения заявленного технического результата в камере жидкостного ракетного двигателя с регенеративной системой охлаждения, включающей реактивное сопло и насадок, насадок (стационарный или сдвигаемый) выполнен профилированным и радиационно-охлаждаемым с отбортовкой, смещенной по отношению к его профилированной части, и пристыкован к соплу, входящему в состав камеры жидкостного ракетного двигателя, без изменения исходной конфигурации сопла. При этом продольный контур насадка выполнен по кривой, описываемой полиномом третьей степени, а толщина стенки насадка определена как ст = kхим, где k - коэффициент запаса материала по толщине, учитывающий величину газопроницаемости материала, хим - глубина химического разрушения материала, определяемая исходя из температуры продуктов сгорания и концентрации кислородосодержащих соединений в продуктах сгорания с учетом теплового пограничного слоя (тепловой завесы), ранее сформировавшегося вблизи стенки сопла.

Главный отличительный признак предлагаемого изобретения - использование в конструкции ЖРД существующего готового сопла, что значительно снижает стоимость реализации камеры ЖРД по сравнению с вновь создаваемыми.

Насадок, выполненный профилированным и радиационно-охлаждаемым с отбортовкой, смещенной по отношению к его профилированной части, и пристыкованный к соплу, входящему в состав камеры жидкостного ракетного двигателя, без изменения исходной конфигурации сопла, позволяет увеличить энергетические характеристики ЖРД при значительном снижении стоимости реализации по сравнению с вновь создаваемыми ЖРД, обеспечивающими такой же уровень характеристик.

Выполнение продольного контура насадка по кривой, описываемой полиномом третьей степени, позволяет уменьшить габариты насадка по сравнению с прямым круговым конусом.

Использование при определении толщины стенки насадка произведения ст = kхим позволяет уменьшить массу насадка, а следовательно, камеры сгорания и ЖРД в целом.

На чертеже показана камера ЖРД с регенеративной системой охлаждения, где 1 - сопло, 2 - профилированный радиационно-охлаждаемый насадок, 3 - отбортовка, 4 - стенка насадка.

Предложенная камера ЖРД содержит сопло 1, к которому пристыкован (стационарный или сдвигаемый) спрофилированный радиационно-охлаждаемый насадок 2 с отбортовкой 3. Насадок спроектирован из условия минимизации суммарных потерь удельного импульса тяги с учетом потерь на участке сопла с регенеративной системой охлаждения.

Контур насадка может быть монотонным либо с перегибом в зависимости от вида граничных условий на входе и на выходе из насадка и от количества разрывов контура (при применении сдвигаемых насадков). Расчеты, проведенные для двигателя с диаметром критического сечения dкр=84 мм при давлении в камере сгорания 8,0 МПа, показали, что оптимальным углом на выходе из насадка является угол кр 5. В расчете учитывались все виды потерь, характерные для ЖРД, в том числе потери из-за рассеяния p, трения тр и химической неравновесности хн. Суммарные потери = p+тр+хн. Для контуров сопел, имеющих перегиб в области размещения углерод-углеродного насадка, изменение зависимости потерь на трение по длине насадка имеет немонотонный характер и может иметь максимум. Величина максимума зависит от кривой контура и, как следствие, от положительного градиента давления на стенке.

Таким образом, выбран наиболее практически реализуемый и проверенный экспериментально контур насадка, описываемый полиномом третьей степени.

Выбор толщины стенки насадка ст осуществляется исходя из механизма химического разрушения материала хим, зависящего, в основном, от распределения приведенного коэффициента тепломассобмена, которое имеет монотонный и близкий к линейному закон изменения по длине контура сопла и концентрации кислородосодержащих соединений в продуктах сгорания топлива ЖРД.

Введением коэффициента запаса материала по толщине k осуществляется учет величины газопроницаемости. Например, для рассмотренного выше примера толщина стенки насадка ст = kхим = (1,3...1,6)хим. Коэффициент k запаса по толщине увеличивается по длине насадка, от минимального значения в районе максимального радиуса поперечного сечения до максимального значения в районе отбортовки (минимального радиуса поперечного сечения).

Формула изобретения

Камера жидкостного ракетного двигателя с регенеративной системой охлаждения, включающая реактивное сопло и насадок, отличающаяся тем, что насадок (стационарный или сдвигаемый) выполнен профилированным и радиационно-охлаждаемым с отбортовкой, смещенной по отношению к его профилированной части, и пристыкован к соплу, входящему в состав камеры жидкостного ракетного двигателя, без изменения исходной конфигурации сопла, причем продольный контур насадка выполнен по кривой, описываемой полиномом третьей степени, а толщина стенки насадка определена как ст = kxим, где k - коэффициент запаса материала по толщине, учитывающий величину газопроницаемости материала, xим- глубина химического разрушения материала, определяемая исходя из температуры продуктов сгорания и концентрации кислородосодержащих соединений в продуктах сгорания с учетом теплового пограничного слоя (тепловой завесы), ранее сформировавшегося вблизи стенки сопла.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к ракетной технике и может быть использовано при разработке заглушек сопел ракетных двигателей, стартующих из пускового контейнера при помощи порохового аккумулятора давления (ПАД)

Изобретение относится к твердотопливным ракетам с подводным стартом

Изобретение относится к области ракетной техники, а именно к ракетным двигателям твердого топлива (РДТТ), и может быть использовано для автоматической стабилизации тяги в условиях различных начальных температур и разброса параметров топлива, например для уменьшения рассеяния попаданий по дальности неуправляемых ракет и уменьшения рассеяния попаданий ручных гранатометов

Изобретение относится к области ракетной техники, а именно к ракетным двигателям твердого топлива (РДТТ), и может быть использовано для автоматической стабилизации тяги в условиях различных начальных температур и разброса параметров топлива, например для уменьшения рассеяния попаданий по дальности неуправляемых ракет и уменьшения рассеяния попаданий ручных гранатометов

Изобретение относится к ракетной технике и может быть использовано при разработке заглушек сопел ракетных двигателей, стартующих из-под воды

Изобретение относится к двухрежимным ракетным двигателям и может быть использовано с целью изменения площади эффективного проходного сечения сопла на стартовом и маршевом участках полета ракеты

Изобретение относится к ракетной технике и может быть использовано при разработке раздвижных сопел ракетных двигателей

Изобретение относится к области ракетной техники и может быть использовано в конструкции ракет малого калибра для соединения ступеней и составных частей ракеты

Изобретение относится к способу изготовления выходного сопла, предназначенного для использования в ракетных двигателях

Изобретение относится к ракетной технике, а именно к соплам большой степени расширения с телескопически складываемым раструбом, и может быть использовано при создании РДТТ

Изобретение относится к ракетной технике и может быть использовано при создании сопел ракетных двигателей на высокоэнергетическом смесевом твердом топливе

Изобретение относится к развертываемой расходящейся части для ракетного двигателя

Изобретение относится к ракетной технике и может быть использовано при разработке раздвижных сопел для жидкостных ракетных двигателей (ЖРД)

Изобретение относится к ракетной технике и может быть использовано при разработке раздвижных сопел ракетных двигателей
Наверх