Способ переработки боенской крови

 

Изобретение относится к мясной промышленности. Способ предусматривает предварительную стабилизацию исходной крови, ее дальнейшую сепарацию на плазму и форменные элементы, охлаждение полученной плазмы до температуры 0-6С, последующую обработку плазмы путем электрохимической активации при плотности тока 0,087 А/см2 в течение 3-5 мин и ее замораживание (в виде чешуйчатого льда) - для использования в колбасном производстве. Это обеспечивает повышение биологической ценности продукта, улучшение его функционально-технологических свойств, расширение области применения плазмы, упрощение технологии, сокращение производственного цикла переработки плазмы крови. 2 табл., 3 ил.

Изобретение относится к мясной промышленности, в частности к технологии переработки боенской крови и ее фракций для рационального и максимального использования высокоценного белкового сырья.

Наиболее близким по технической сущности является способ переработки боенской крови с использованием ферментных препаратов при последовательном внесении их в обрабатываемую систему (патент №2128448, опубл. 10.04.99, бюл. №10).

Недостатком известного способа является длительность, использование ферментных препаратов, которые требуют последующей инактивации, продукт (гидролизат) быстро подвергается микробиальной порче, имеет горьковатый вкус и запах, нет возможности регулирования физико-химических свойств (рН и окислительно-восстановительного потенциала - ОВП).

Технической задачей изобретения является получение продукта повышенной биологической ценности, улучшение функционально-технологических свойств продукта, расширение области применения плазмы, упрощение технологии, сокращение производственного цикла переработки плазмы крови (ПК).

Поставленная задача достигается тем, что в способе переработки боенской крови, предусматривающем предварительную стабилизацию сходной боенской крови, ее дальнейшую сепарацию, новым является то, что полученную ПК охлаждают до температуры 0-6С и подвергают электрохимической активации (ЭХА) при плотности тока 0,087 А/см2 в течение 3-5 мин.

Полученная активированная плазма крови рекомендуется для регулирования физико-химических, биохимических, технологических процессов при производстве мясопродуктов. Может использоваться взамен части основного сырья при производстве вареных колбасных изделий без снижения их качества.

Наиболее ценная часть белков крови убойных животных сконцентрирована в плазме крови, кроме того, плазма - слабоокрашенная жидкость без ярко выраженных специфических, характерных для крови, вкуса, цвета и запаха. Это подтверждает и оправдывает более широкие прикладные возможности этого сырья. Кроме того, белки плазмы (массовая доля, % 7,2-7,0) отличаются высокой степенью усвояемости, сбалансированностью аминокислотного состава, хорошей растворимостью и эмульгирующей способностью.

Собранную при обескровливании кровь убойных животных стабилизируют каким-либо известным способом, позволяющим использовать ее на пищевые цели, подвергают сепарированию для разделения на фракции - форменные элементы (35-40%) и плазму (60-65%), которую собирают в накопитель. Полученную плазму крови охлаждают в охладителе до температуры 0-6С и направляют в активатор. Активированную плазму крови собирают в емкости для католита и анолита соответственно. Католит и анолит поступают (поочередно) в льдогенератор для получения чешуйчатого льда, который затем направляется в колбасное производство.

ЭХА приводит к изменению свойств активированной системы. Очевидно, эти изменения происходят в результате изменения свойств воды (электропроводности, плотности, ОВП, рН, диэлектрической проницаемости), находящейся в плазме крови.

Поскольку основными электродными процессами являются известные превращения

2О+2е-2+2OН- (катод),

Н2О=1/2O2+2H++2е- (анод),

то каналы активации раствора следует связывать с состоянием и возможной ролью Н2О, Н2, О2, Н2О2, ионов H+ и ОН-, другими ионами, имеющимися в данной среде. Наличие перечисленных частиц указывает на ряд превращений, происходящих в электроактивированных растворах, в частности, разрыв водородных связей в кластерах воды, дегидратацию и пересольватацию ионов.

Активирование плазмы приводит к снижению микробиальной обсемененности, изменению величин рН и электрохимического потенциала.

Как видно на фиг.1 и 2, изменения величины рН, ОВП анализируемой системы зависят от длительности обработки. В течение первой минуты активации рН практически не изменяется. После второй минуты активации наблюдается постепенное снижение рН в анодной зоне активатора и постепенное повышение его в катодной зоне. Причем, изменение рН замедляется при увеличении продолжительности активации (фиг.1).

На фиг.2 видно, что изменение значения ОВП в анодной зоне активатора в течение первых двух минут практически не изменяется, при более продолжительной активации изменение величины ОВП становится более заметным. В катодной зоне активатора в течение первых трех минут наблюдается резкое снижение ОВП. После трех минут активации изменения становятся менее заметными.

Изучив зависимость ОВП и рН от времени активации, установили, что при данном режиме (I=4 А, =0,087 А/см2) потенциал изменяется от +99 мВ до минус 750-800 мВ в катодной зоне активатора и от +99 мВ до +160-170 мВ (фиг.2) - в анодной. Значение рН в кислой зоне активатора (фиг.1) меняется от 7,7 до 5,8-6,0, в щелочной - от 7,7 до 9,9-10,1.

Из опытных данных (фиг.3) видно, что увеличение продолжительности активации сопровождается повышением температуры активируемой системы. Плазма крови содержит белковую фракцию, значительное повышение температуры может привести к началу денатурации белков, что необходимо предотвратить. Для этого плазму крови перед активированием следует охлаждать до температуры 0-6С.

Известно (Пащенко Л.П., Санина Т.В., Бывальцев А.И. Электрохимия в технологии хлеба, макаронных и кондитерских изделий / ВГТА - Воронеж, 2001, с.33-35), что снижению микробиальной обсемененности сырья и готовых продуктов способствует обработка их ЭХА водой. Плазма крови содержит до 90% воды и является электролитом. При ее получении происходит обсеменение на различных этапах технологического процесса (обескровливание, сепарирование и др.), в ней активно развиваются микроорганизмы, т.к. обеспечены всеми необходимыми питательными веществами.

После активации происходит резкое снижение количественного (табл.2) и качественного состава микроорганизмов, как у плазмы с кислой реакцией среды, так и у плазмы с щелочной реакцией среды. Из таблицы видно, что наибольшее снижение количественного состава микроорганизмов наблюдается у анолита (время активации 5 мин), по сравнению с обычной ПК она ниже на 68%. Наименьшее снижение микробиальной обсемененности, всего на 13%, установлено у католита (время активации 3 мин). Из диаграммы четко видна тенденция снижения количества микроорганизмов и у католита, и у анолита по мере увеличения продолжительности ЭХА.

Электрохимическая активация ПК осуществляется следующим образом: вначале плазму крови охлаждают, заливают в активатор и активируют. Охлаждать ПК необходимо для предотвращения денатурации белка, т.к. при пропускании через нее электрического тока заметно повышается температура, так, у ПК с температурой до начала активации 0С и времени активации 5 мин она равна 9С, а при начальной температуре активируемой системы 8С она поднимается почти до 40С. Сравнительная характеристика изменения температуры в зависимости от начальной температуры ПК представлена на фиг.3 и в таблице 1. Наиболее оптимальной является температура 0-6С. Охлаждать до более низкой температуры также не следует, т.к. в результате образования кристалликов льда в системе нарушится равномерное распределение фракций ПК.

На фиг.1 и 2 видно, что значение рН и ОВП зависят от продолжительности активации. При увеличении продолжительности активации рН системы в анодной зоне активатора уменьшается, в катодной - увеличивается; значение ОВП в анодной зоне активатора увеличивается, в катодной - уменьшается. Так, при активации в течение 1 мин в анодной зоне активатора значение рН практически не изменилось, в катодной - увеличилось до 8,0. При ЭХА в течение 5 мин рН в анодной зоне уменьшилось до 6, в катодной - увеличилось до 10,1, однако увеличивать продолжительность обработки нецелесообразно, т.к. при этом значительно возрастет температура.

Продолжительность активации также влияет на микробиальную обсемененность. Как видно из табл. 2, у активированной ПК с кислой реакцией среды при любой продолжительности активации микробиальная обсемененность меньше, чем ПК с щелочной реакцией среды при таких же условиях активации.

По органолептическим показателям ПК с кислой реакцией среды (анолит) значительно уступает ПК с щелочной реакцией среды (католит). У анолита ярко выражен металлический привкус и запах, свойственный неактивированной ПК, у католита, напротив, он практически исчезает. Наличие вегетативной микрофлоры отсутствует и у католита, и у анолита независимо от времени активации.

Полученный продукт может служить основой для различных пищевых форм, путем дополнительного введения специфических ингредиентов, ароматизаторов и других функциональных добавок, а также в колбасном производстве.

Способ осуществляется следующим образом. Плазму крови охлаждают до 0С, помещают в ячейки активатора объемом 0,5 дм3 каждая, с высотой столба жидкости в них по 45 мм и полезной площадью 45,98 см2. Ячейки разделены полунепроницаемой мембраной. Расстояние между электродами 30 мм. Активируют ПК при плотности тока 0,087 А/см2 в течение 3 мин. Измерение температуры проводят электронным термометром, помещенным в одну из ячеек. Значения рН и ОВП измеряют электронным рН-метром. Микробиальную обсемененность активированной ПК определяют путем параллельных поверхностных посевов на твердую питательную среду (агар-агар).

Способ осуществляется в соответствии с примерами (табл.1). Характеристика продукта в соответствии с указанными в табл.1 примерами представлена в табл.2.

Формула изобретения

Способ переработки боенской крови, предусматривающий предварительную стабилизацию исходной боенской крови, ее дальнейшую сепарацию, отличающийся тем, что полученную плазму крови охлаждают до температуры 0-6С и подвергают электрохимической активации при плотности тока 0,087 А/см2 в течение 3-5 мин.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6



 

Похожие патенты:

Изобретение относится к мясной промышленности, в частности к технологии переработки боенской крови и получению из нее основы для производства белковых безалкогольных напитков

Изобретение относится к новым белковым производным крови, сырья, в состав которого входят белки крови и гемоглобина

Изобретение относится к технологии приготовления желейных белковосодержащих изделий

Изобретение относится к перерабатывающей промышленности, а именно к технологии производства продуктов питания, в состав которых входит геминовое железо, и может быть использовано при получении сахаросодержащих продуктов, таких как кремы, пасты, помады, глазури и т.д

Изобретение относится к технологии получения биологически активных соединений из животного сырья, а именно к промышленному способу выделения железосодержащего белка - гемоглобина из крови сельскохозяйственных животных
Изобретение относится к пищевой промышленности и может быть использовано при производстве мелкоформованных и упакованных пищевых продуктов
Изобретение относится к пищевой промышленности и может быть использовано при производстве пищевого гематогена брикетированного в индивидуальной упаковке, предназначенного для лечебного, профилактического и специального питания, в том числе для диетического и диабетического питания

Изобретение относится к мясной промышленности, а именно к технологии переработки крови сельскохозяйственных животных

Изобретение относится к мясной промышленности и может быть использовано при переработке скота, а именно его крови. Установка содержит на монтажном столе с блоком пускозащитной аппаратуры цилиндрический экранирующий корпус. Внутри корпуса коаксиально расположен ротор, выполненный в виде колеса, который приводится в движение от мотора-редуктора. По всему периметру ротора вертикально смонтированы нижние части цилиндрических резонаторных камер с силиконовым покрытием изнутри. Их боковые стороны соприкасаются, а количество зависит от диаметра ротора. Нижние части резонаторных камер охвачены натяжным ободком до участка, где расположены упорные элементы. Верхние части резонаторных камер жестко закреплены с тыльной стороной под СВЧ-генераторы так, что излучатель направлен вовнутрь камеры. Для этого на основании цилиндра имеется отверстие, состыкованное с излучателем. Их количество равно количеству СВЧ-генераторов. На верхнем основании экранирующего корпуса по периметру расположены СВЧ-генераторы и ИК-лампы с чередованием, дозатор и мотор-редуктор для привода ротора, а также имеется смотровая дверца. На боковой поверхности экранирующего корпуса, в области расположения упорного элемента, смонтирован выгрузной лоток. Использование изобретения позволит повысить качество термообработки технической крови сельскохозяйственных животных. 11 ил.
Изобретение относится к пищевой промышленности. Цельную кровь обрабатывают стабилизатором-консервантом, состоящим из смеси растворов 4%-ного натрия цитрата и 0,07%-ного раствора лимонной кислоты. Массовая доля раствора лимонной кислоты от общей массы стабилизатора-консерванта 0,035%. Выделяют эритроцитарную массу сепарированием при факторе разделения, равным 2000 ед. Проводят гидролиз при температуре 35°C, продолжительность процесса 12 ч, соотношение эритроцитарная масса:кислота 10:1. В качестве кислоты используют 5%-ную уксусную кислоту, или 10%-ную лимонную кислоту, или 10%-ную уксусную кислоту. Продукт сушат способом сублимации. Изобретение обеспечивает получение продукта с высокой биологической ценностью для профилактики железодефицита, продукт не содержит вредные примеси.

Группа изобретений относится к пищевой промышленности. Смешивают птичью кровь с антикоагулянтом для получения антикоагулированной цельной крови. Центрифугируют антикоагулированную цельную кровь с отбором легкой жидкости и получения плазматической жидкости. Добавляют декальцинирующий агент в плазматическую жидкость и проводят реакцию осаждения. Удаляют осадок путем центрифугирования реакционной плазматической жидкости. Осуществляют ультрафильтрацию декальцинированной плазматической жидкости с использованием ультрафильтрационной мембраны и сбор фильтрата. Добавляют эмульгатор к полученной плазматической жидкости. Осуществляют нанофильтрацию с получением концентрата плазмы. Сушат концентрат плазмы для получения порошка белка птичьей плазмы. В качестве антикоагулянта используют цитрат натрия в количестве от 0,1 до 5 мас./мас.% от всей крови. Малозольный порошок белка птичьей плазмы имеет содержание белка больше или равно 70%, иммуноглобулина больше или равно 14% и золы меньше или равно 15%. Малозольный порошок белка птичьей плазмы применяют для получения пищевой композиции. Группа изобретений обеспечивает эффективное преодолевание недостатков сложной глубокой обработки птичьей крови, переработку источника птичьей крови, снижает загрязнение окружающей среды, полученный продукт имеет преимущества, состоящие в высоком содержании белка, хороших вкусовых качествах, сбалансированном аминокислотном составе. 3 н. и 9 з.п. ф-лы, 1 ил., 7 табл., 6 пр.
Наверх