Способ получения полимерного катионита (варианты)

Изобретение относится к области получения полимерных катионитов и касается способа получения новых сетчатых полимеров, которые могут найти применение в качестве катионитов в различных областях промышленности, в частности, для очистки воды, разделения и выделения цветных и редких металлов, в качестве носителя катализаторов и др. Описан способ получения полимерных катионитов на основе иммобилизованных метациклофаноктолов, а именно политетраметил[l4]сульфонатометациклофаноктола, полученного путем обработки политетраметил[l4]метациклофаноктола концентрированной серной кислотой при их массовом соотношении 1:11 соответственно. Обработку проводят дважды, повторную обработку проводят сульфирующим агентом, содержащим концентрированную серную кислоту и олеум в соотношении объемных частей 3:2 соответственно. Получен также политетрасульфонатофенил[l4]-метациклофаноктол путем обработки политетрафенил[l4]метациклофаноктола концентрированной серной кислотой при их массовом соотношении 1:9 соответственно. Технический результат - получение катионитов, обладающих повышенной химической стойкостью и селективностью и проявляющих катионообменные свойства в широком диапазоне рН (0-14). 2 н. и 6 з.п. ф-лы, 1 табл., 1 ил.

 

Изобретение относится к области получения полимерных катионитов и касается способа получения новых сетчатых полимеров, которые могут найти применение в качестве катионитов в различных областях промышленности, в частности, для очистки воды, разделения и выделения цветных и редких металлов, в качестве носителя катализаторов и др.

Известно получение полимерных катионитов путем сульфирования сшитых (сетчатых) полимеров, например полимера, содержащего эфир метакриловой кислоты, с использованием в качестве сульфирующего агента концентрированной серной кислоты (заявка РФ №2003120022, В 01 J 20/26, С 02 F 1/56, опубл. 2005.01.10).

Известно получение сетчатых полимеров, используемых в качестве катионитов, на основе иммобилизованных метациклофаноктолов (Г.Н.Альтшулер и др. Взаимодействие иммобилизованного 2,8,14,20-тетраметил-4,6,10,12,16,18,22,24-октагидроксикаликс[4]арена с ионами Na+, Cs+, NH4+ и органическими катионами. Изв. АН. Сер. хим. 1998 г., №11, с.2214-2216; Н.Altshuler et al., Novel Network Polymers Based on Calixresorcinarenes, Macromol. Symp.2002, v.181, p.1-4). Резольной поликонденсацией тетраметил[l4]метациклофаноктола с формальдегидом при мольном соотношении 1:3 соответственно синтезирован сетчатый полимер политетраметил[l4]метациклофаноктол и каталитической резольной поликонденсацией тетрафенил[l4]метациклофаноктола с формальдегидом при мольном соотношении 1:4 соответственно синтезирован сетчатый полимер политетрафенил[l4]метациклофаноктол. Синтезированные сетчатые полимеры являются слабокислотными катионитами.

Эти слабокислотные катиониты проявляют ионообменные свойства при взаимодействии с растворами электролитов только в щелочной среде (рН>7), имеют невысокую химическую стойкость и селективность в ряду катионов металлов.

Задачей изобретения является получение катионитов, обладающих повышенной химической стойкостью и селективностью и проявляющих катионообменные свойства в широком диапазоне рН (0-14).

Получен полимерный катионит на основе иммобилизованных метациклофаноктолов, а именно политетраметил[l4]сульфонатометациклофаноктол (1) формулы

где R=СН3, R'=SO3H.

путем обработки политетраметил[l4]метациклофаноктола концентрированной серной кислотой при их массовом соотношении 1:11 соответственно, которую проводят дважды, при этом повторную обработку проводят сульфирующим агентом, содержащим концентрированную серную кислоту и олеум в соотношении объемных частей 3:2 соответственно.

Используют серную кислоту с концентрацией 90-98%.

После каждой обработки продукт многократно промывают серной кислотой с последовательным снижением ее концентрации после каждого промывания.

Полимерный катионит получают в виде темно-коричневых гранул неправильной формы.

Получен также полимерный катионит на основе иммобилизованных метациклофаноктолов, а именно политетрасульфонатофенил[l4]метациклофаноктол (2) формулы

где R=Ph-SO3Н, R'=H,

путем обработки политетрафенил[l4]метациклофаноктола концентрированной серной кислотой при их массовом соотношении 1:9 соответственно, которую проводят дважды, при этом повторную обработку проводят сульфирующим агентом, содержащим концентрированную серную кислоту и олеум в соотношении объемных частей 3:2 соответственно.

Используют серную кислоту с концентрацией 90-98%.

После каждой обработки продукт многократно промывают серной кислотой с последовательным снижением ее концентрации после каждого промывания.

Полимерный катионит (2) получают в виде сферических гранул диаметром 0,05-0,5 мм.

Элементарное звено полимерного катионита (1) представляет собой 1,8,15,22-тетраметил-11,25-диметано-4,18-дисульфонато[l4]метациклофан-3,5,10,12,17,19,24,26-октол.

В одном килограмме полимерного катионита (1) содержится 1,16 молей 1,8,15,22-тетраметил-11,25-диметано-4,18-дисульфонато[l4]метациклофан-3,5,10,12,17,19,24,26-октола.

Для получения полимерного катионита (1) подходит любой сетчатый полимер на основе тетраметил[l4]метациклофаноктола, описанный в работе Г.Н.Альтшулер и др. Взаимодействие иммобилизованного 2,8,14,20-тетраметил-4,6,10,12,16,18,22,24-октагидроксикаликс[4]арена с ионами Na+, Cs+, NH4+ и органическими катионами. Изв. АН. Сер. хим. 1998 г., №11, с.2214-2216.

Элементарное звено полимерного катионита (2) представляет собой 1,8,15,22-тетрасульфонатофенил-11,25-диметано[l4]метациклофан-3,5,10,12,17,19,24,26-октол.

В одном килограмме полимерного катионита (2) содержится 0,8 молей 1,8,15,22-тетрасульфонатофенил-11,25-диметано[l4]метациклофан3,5,10,12,17,19,24,26-октола.

Для получения полимерного катионита (2) подходит любой сетчатый полимер на основе тетрафенил[l4]метациклофаноктола, описанный в работе Н.Altshuler et al. Novel Network Polymers Based on Calixresorcinarenes, Macromol. Symp.2002, v.181, p.1-4.

Полученные полимерные катиониты (1) и (2) отличаются расположением сульфонатных групп. В катионите (1) сульфонатные группы находятся в резорцинареновом поясе макроцикла. В катионите (2) сульфонатные группы содержит арильный заместитель, удаленный от резорцинаренового пояса.

По данным потенциометрического титрования, элементного анализа, сорбционным характеристикам (таблица), FTIR и DRIFT-спектроскопии полученные соединения являются сильнокислотными сульфокатионитами.

Кривые потенциометрического титрования полученных полимерных катионитов (см. чертеж) имеют форму, обусловленную присутствием в структуре элементарного звена сильнокислотных сульфогрупп, диссоциирующих в кислой, нейтральной и щелочной средах (в области рН 0-14).

Характеристики полученных полимерных катионитов приведены в таблице. Как видно из таблицы, полная ионообменная емкость полученных полимерных катионитов (1) и (2) - политетраметил[l4]сульфонатометациклофаноктола и политетрасульфонатофенил[l4]метациклофаноктола (по 0,1 н. NaOH) составляет 6,47 и 5,65 моля на кг 1 сухого полимера в Н-форме соответственно. Это значительно превышает соответствующие величины для аналогичных катионитов: политетраметил[l4]метациклофаноктола и политетрафенил[l4]метациклофаноктола (5,0 и 3,8 моль/кг). Приведенные в таблице величины рабочих емкостей при сорбции хлоридов щелочных, редких, цветных металлов, тетрааммиаката палладия и гексаметилентетрамина (уротропина) из нейтральных и кислых растворов соответствуют содержанию сульфонатных групп в полученных катионитах. В этих условиях сорбционная способность аналогичных катионитов политетраметил[l4]метациклофаноктола и политетрафенил[l4]метациклофаноктола равна нулю. Рабочий сорбционный режим полученных катионитов политетраметил[l4]сульфонатометациклофаноктола и политетрасульфонатофенил[l4]метациклофаноктола находится в области 0<рН<14. Полученные катиониты химически стабильны во всем рабочем диапазоне рН. Их поверхность устойчива к окислению на воздухе (из сопоставления FTIR и DRIFT спектров). Таким образом, получены новые полимерные катиониты, способные с высокой рабочей емкостью сорбировать катионы металлов 1-4 групп Периодической системы элементов Д.И.Менделеева, слабые органические основания из кислых, нейтральных и щелочных технических растворов и биологических сред.

Химическая стойкость полученных полимерных катионитов политетраметил[l4]сульфонатометациклофаноктола и политетрасульфонатофенил[l4]метациклофаноктола к щелочам, кислотам, окислителям, высокая полная динамическая ионообменная емкость в широком диапазоне рН (0-14) обусловливает возможность их широкого применения в различных отраслях промышленности для глубокой деминерализации воды, для разделения и выделения цветных и редких металлов из многокомпонентных систем (смесей), обратимой сорбции крупных органических катионов и в качестве носителей катализаторов.

Пример 1

Полимерный катионит (1) - политетраметил[l4]сульфонатометациклофаноктол - получали двукратным сульфированием сетчатого полимера - политетраметил[l4]метациклофаноктола.

4 г полимера политетраметил[l4]метациклофаноктола (5 ммоль) заливали на 24 часа 20 мл дихлорэтана (ДХЭ). Затем избыток ДХЭ сливали, добавляли 25 мл концентрированной серной кислоты (90%) и выдерживали 5 часов при 98°С, отгоняя выделяющуюся воду. Сульфированный продукт отфильтровывали на воронке Бюхнера через стеклоткань с помощью вакуум-насоса, промывали четыре раза серной кислотой (соответственно 60, 40, 20 и 10%-ной концентрации), а затем дистиллированной водой до нейтральной реакции промывных вод. Высушивали на воздухе 24 часа. Повторное сульфирование проводили в тех же условиях. В качестве сульфирующего агента брали раствор, состоящий из 3 объемных частей концентрированной серной кислоты (98%) и 2 объемных частей олеума (25% свободного SO3 в серной кислоте). Полученный катионит отфильтровывали на воронке Бюхнера через стеклоткань с помощью вакуум-насоса, промывали четыре раза серной кислотой, а затем дистиллированной водой до нейтральной реакции промывных вод. Высушивали 24 часа при 105°С. Получали 3,4 г полимерного катионита (1) - политетраметил[l4]сульфонатометациклофаноктола - в Н-форме в виде темно-коричневых гранул неправильной формы. Выход 85%. Содержание метациклофаноктола в катионите (1) составляет 1,16 моль·кг-1.

Пример 2

Полимерный катионит (2) - политетрасульфонатофенил[l4]метациклофаноктол получали двукратным сульфированием полимера политетрафенил[l4]метациклофаноктола.

6 г полимера политетрафенил[l4]метациклофаноктола (5 ммоль) в виде сферических гранул диаметром 0,05-0,5 мм заливали на 24 часа 30 мл дихлорэтана (ДХЭ). Затем избыток ДХЭ сливали, добавляли 30 мл концентрированной серной кислоты (90%) и выдерживали 5 часов при 98°С, отгоняя выделяющуюся воду. Сульфированный продукт отфильтровывали на воронке Бюхнера через стеклоткань с помощью вакуум-насоса, промывали четыре раза серной кислотой (соответственно 60, 40, 20 и 10%-ной концентрации), а затем дистиллированной водой до нейтральной реакции промывных вод. Высушивали на воздухе 24 часа. Повторное сульфирование проводили в тех же условиях. В качестве сульфирующего агента брали раствор, состоящий из 3 объемных частей концентрированной серной кислоты (98%) и 2 объемных частей олеума (25% свободного SO3 в серной кислоте). Полученный катионит отфильтровывали на воронке Бюхнера через стеклоткань с помощью вакуум-насоса, промывали четыре раза серной кислотой, а затем дистиллированной водой до нейтральной реакции промывных вод. Высушивали 24 часа при 105°С. Получали 3,8 г полимерного катионита (2) - политетрасульфонатофенил[l4]метациклофаноктола - в Н-форме в виде сферических гранул диаметром 0,05-0,5 мм. Выход 63%. Содержание метациклофаноктола в катионите (2) составляет 0,8 моль·кг-1.

Характеристики катионитов на основе сульфонатометациклофаноктолов
КатионитСодержание в полимере, моль/кгДинамическая катионообменная емкость, экв/кг
по электролитампо уротропину
циклофаноктолсульфонатная группа*0,1 н.0,01 н.0,01 н.0,01 н.0,01 н.0,01 н.0,1 н.
NaOHNaClCuCl2InCl3SnCl4[Pd(NH3)4]Cl2
Политетраметил[l4]сульфонатометациклофаноктол1,161,85±0,046,47±0,101,85±0,051,86±0,051,85±0,051,85±0,05--
Политетрасульфонатофенил[l4]метациклофаноктол0,82,45±0,045,65±0,102,45±0,052,45±0,052,45±0,052,45±0,052,45±0,052,45±0,05
*по данным элементного анализа

1. Способ получения полимерных катионитов на основе иммобилизованных метациклофаноктолов, а именно политетраметил-[l4]сульфонатометациклофаноктола формулы

где R=СН3, R'=SO3Н,

заключающийся в обработке политетраметил[l4]метациклофаноктола концентрированной серной кислотой при их массовом соотношении 1:11 соответственно, которую проводят дважды, при этом повторную обработку проводят сульфирующим агентом, содержащим концентрированную серную кислоту и олеум в соотношении объемных частей 3:2 соответственно.

2. Способ по п.1, отличающийся тем, что используют серную кислоту с концентрацией 90-98%.

3. Способ по п.1, отличающийся тем, что после каждой обработки продукт многократно промывают серной кислотой с последовательным снижением ее концентрации после каждого промывания.

4. Способ по п.1, отличающийся тем, что полимерный катионит получают в виде темно-коричневых гранул неправильной формы.

5. Способ получения полимерных катионитов на основе иммобилизованных метациклофаноктолов, а именно политетрасульфонатофенил[l4]метациклофаноктола формулы

где R=Ph-SO3Н, R'=H,

заключающийся в обработке политетрафенил[l4]метациклофаноктола концентрированной серной кислотой при их массовом соотношении 1:9 соответственно, которую проводят дважды, при этом повторную обработку проводят сульфирующим агентом, содержащим концентрированную серную кислоту и олеум в соотношении объемных частей 3:2 соответственно.

6. Способ по п.5, отличающийся тем, что используют серную кислоту с концентрацией 90-98%.

7. Способ по п.5, отличающийся тем, что после каждой обработки продукт многократно промывают серной кислотой с последовательным снижением ее концентрации после каждого промывания.

8. Способ по п.5, отличающийся тем, что полимерный катионит получают в виде сферических гранул диаметром 0,05-0,5 мм.



 

Похожие патенты:

Изобретение относится к технологии изготовления фильтрующих материалов на основе полимеров пространственно-глобулярной структуры и может быть использовано в системах фильтрации воды.

Изобретение относится к очистке вод от радионуклидов цезия. .

Изобретение относится к области экологии и охраны окружающей среды, конкретно к экологии атомной промышленности. .
Изобретение относится к получению сорбентов для очистки воды и может быть использовано для очистки питьевой или промышленной воды с высоким содержанием ионов тяжелых металлов и полярных органических веществ, в частности красителей.

Изобретение относится к области химической технологии, а именно к способам извлечения летучих химических соединений из газовоздушных смесей. .

Изобретение относится к области прикладной химии. .

Изобретение относится к материалам области производства нетканых волокнисто-пористых полимерных материалов, используемых в качестве сорбентов

Изобретение относится к области разработки сорбционных материалов для очистки и обеззараживания воды и водных сред, в том числе биологических жидкостей организма
Изобретение относится к технологии получения сорбентов, используемых в природоохранных целях для локализации сбора и утилизации нефти и нефтепродуктов с загрязненных участков поверхности воды и грунта

Изобретение относится к области высокомолекулярных соединений, а именно к новым азот- и серосодержащим сетчатым сополимерам 1-винил-1,2,4-триазола с дивинилсульфидом, которые могут быть использованы для извлечения золота, серебра и платины из кислых растворов

Изобретение относится к получению хелатообразующих полимерных сорбентов и может быть использовано в аналитической химии и в области охраны окружающей среды для извлечения, разделения и концентрирования тяжелых и редких металлов из природных и промышленных вод

Изобретение относится к области высокомолекулярных соединений, а именно к новым азот- и кислородсодержащим сетчатым сополимерам 1-винил-1,2,4-триазола с дивиниловым эфиром диэтиленгликоля, которые могут быть использованы для сорбции золота, серебра, платины, палладия из кислых растворов
Изобретение относится к области охраны окружающей среды, позволяет утилизировать полимерные отходы, отходы нефтехимического производства, служит для ликвидации аварийных разливов нефти и нефтепродуктов, очистки промышленных стоков

Изобретение относится к полимерным композициям, которые можно использовать в области очистки и обеззараживания природных и сточных вод
Наверх