Способ получения гидропероксида циклогексил-о-ксилола

Изобретение относится к способу получения гидропероксида циклогексил-о-ксилола, который может служить источником совместного получения ксиленолов и циклогексанона и в качестве инициатора эмульсионной полимеризации непредельных углеводородов. Согласно изобретению получение гидропероксида циклогексил-о-ксилола ведут окислением циклогексил-о-ксилола кислородом воздуха при температуре 100-150°С и атмосферном давлении в присутствии катализатора N-гидроксифталимида в течение 1-3 часов до содержания гидропероксида циклогексил-о-ксилола 34%. Технический результат - повышенная скорость образования гидропероксида циклогексил-о-ксилола, что позволяет снизить продолжительность процесса и уменьшить энергозатраты в процессе окисления. 2 табл.

 

Изобретение относится к способу получения гидропероксида циклогексил-о-ксилола, который может служить источником совместного получения ксиленолов и циклогексанона [Б.Д.Кружалов, Б.И.Голованенко. Совместное получение фенола и ацетона. - М.: Гостоптехиздат, 1963; Г.Д.Харлампович, Ю.В.Чуркин. Фенолы. - М.: Химия, 1974], а также в качестве инициатора эмульсионной полимеризации непредельных углеводородов [Г.А.Разуваев, Ю.А.Ольдекоп, Е.И.Федорова. Успехи химии, 21, 379 (1952)].

Наиболее близким является способ получения гидропероксида циклогексил-о-ксилола жидкофазным окислением циклогексил-о-ксилола кислородом воздуха при атмосферном давлении и температуре 100-130°С в присутствии инициатора - гидропероксида изопропилбензола, щелочной добавки - соды. В присутствии гидропероксида изопропилбензола при температуре 100°С удалось накопить 4,9% гидропероксида циклогексил-о-ксилола за 6 часов. С повышением температуры до 120°С количество гидропероксида увеличивается до 15,1% за то же время. Дальнейшее повышение температуры не дает положительного результата, так при 130°С удалось накопить 5,6% гидропероксида циклогексил-о-ксилола за 3 часа, а далее начинается процесс разложения. Увеличение количества инициатора приводит к увеличению содержания продукта до 17,7% за 6 часов при 110°С. В присутствии инициатора и щелочной добавки удается получить 21,8% гидропероксида циклогексил-о-ксилола за 7 часов при 120°С. Условия проведения процесса представлены в таблице 1 [Е.А.Курганова, Е.В.Смирнов, Ю.А.Лойко, Г.Н.Кошель. Известия ВУ3-ов, 2008, т.51 (4), с.34-36].

Таблица 1
Автоокисление циклогексил-о-ксилола при температуре 100-130°С
№ опыта Количество гидропероксида изопропилбензола, взятого на окисление, мас.% Температура реакции, °С Максимальное содержание гидропероксида циклогексил-о-ксилола, % Время окисления, час Средняя скорость образования гидропероксида циклогексил-о-ксилола, (%/час)
1 1,53 100 4,9 6 0,8
2 1,53 110 11,2 6 1,9
3 1,53 120 15,1 6 2,5
4 1,53 130 5,6 3 1,9
5 0,71 110 3,9 6 1,3
6 2,70 110 17,7 6 3,0
7 1,53 110 21,8 7 3,2
* - эксперимент проводился в присутствии 1 мас.% Nа2СО3

Характерной особенностью вышеуказанного процесса является низкая скорость окисления (не более 2-3%), длительное проведение процесса (5-7 часов), которое в ряде случаев приводит к самопроизвольному распаду гидропероксидов. Все вышеуказанное приводит к значительным энергозатратам.

Технической задачей данного изобретения является устранение вышеуказанных недостатков, повышение скорости процесса образования гидропероксида циклогексил-о-ксилола, снижение продолжительности процесса и уменьшение энергозатрат при его проведении.

Данная техническая задача решается использованием способа получения гидропероксида циклогексил-о-ксилола путем жидкофазного окисления циклогексил-о-ксилола кислородом воздуха при атмосферном давлении и температуре 100-150°С в присутствии N-гидроксифталимида в количестве 0,5-2,5 мас.%. В указанных условиях удается окислить циклогексил-о-ксилол за 1-3 часа до содержания гидропероксида циклогексил-о-ксилола до 34% при селективности его образования свыше 90%. Характерной особенностью используемого нами катализатора является простота его получения и возможность его многократного использования. Циклогексил-о-ксилол был получен алкилированием циклогексил-о-ксилола циклогеканолом.

Настоящее изобретение иллюстрируется следующими примерами.

Пример 1

В стеклянный реактор емкостью 10 см3 загружали 4 см3 циклогексил-о-ксилола и 1,19 мас.% N-гидроксифталимида, подавали кислород при атмосферном давлении, температуре 130°С в течение 3 часов и непрерывном перемешивании. Содержание гидропероксида составило 29,1%. Оксидат анализировали на содержание гидропероксида йодометрическим методом анализа. Циклогексил-о-ксилол был получен алкилированием о-ксилола циклогеканолом.

Пример 2

В стеклянный реактор емкостью 10 см3 загружали 4 см3 циклогексил-о-ксилола и 1,19 мас.% N-гидроксифталимида, подавали кислород при атмосферном давлении, температуре 150°С в течение 1 часа и непрерывном перемешивании. Содержание гидропероксида составило 34,0%. Оксидат анализировали на содержание гидропероксида йодометрическим методом анализа. Циклогексил-о-ксилол был получен алкилированием о-ксилола циклогеканолом.

Результаты проведенных опытов приведены в таблице 2.

Таблица 2
Автоокисление циклогексил-о-ксилола в присутствии N-гидроксифталимида
№ опыта Количество N-гидроксифтали-мида, взятого на окисление, мас.% Температура реакции, °С Максимальное содержание гидропероксида циклогексил-о-ксилола, % Время окисления, час Средняя скорость образования гидропероксида циклогексил-о-ксилола, (%/ч)
1 1,19 100 14,0 3 4,7
2 1,19 110 15,5 3 5,2
3 1,19 120 17,4 3 5,8
4 1,19 130 29,1 3 9,7
5 1,19 140 31,4 3 10,5
6 1,19 150 34,0 1 34,0
7 0,59 130 19,9 3 6,6
8 2,38 130 21,4 3 7,1

Время получения гидропероксида циклогексил-о-ксилола по предлагаемому способу по сравнению с прототипом сокращается в 2-10 раз, энергозатраты снижены на 25-30%.

Способ получения гидропероксида циклогексил-о-ксилола жидкофазным окислением циклогексил-о-ксилола кислородом воздуха при атмосферном давлении и температуре 100-150°С, отличающийся тем, что окисление циклогексил-о-ксилола проводят в присутствии катализатора N-гидроксифталимида в течение 1-3 ч.



 

Похожие патенты:

Изобретение относится к способу получения гидропероксида циклогексилизопропилбензола, который используется в качестве инициатора эмульсионной полимеризации непредельных углеводородов.

Изобретение относится к способу получения гидропероксида циклогексилтолуола, который может служить источником совместного получения крезолов и циклогексанона и в качестве инициатора эмульсионной полимеризации непредельных углеводородов.
Изобретение относится к способу получения органических алкиларилгидропероксидов, используемых в качестве исходного материала при получении пропиленоксида и алкениларила.

Изобретение относится к способу получения -фенилэтилгидропероксида из этилбензола окислением последнего кислородом в присутствии тройной каталитической системы, включающей бис-ацетилацетонат никеля, электронно-донорное комплексообразующее соединение, например стеарат щелочного металла - натрия или лития, N-метилпирролидон-2, гексаметилфосфортриамид, а также фенол в концентрации (0,5-3,0)10-3 моль/л, -фенилэтилгидропероксид используется для получения пропиленоксида, мировое производство которого составляет более 106 тонн в год, причем 44% производства основано на применении ФЭГ в качестве эпоксидирующего агента.

Изобретение относится к способу получения гидропероксидов путем окисления углеводорода кислородсодержащим газом в присутствии определенного соединения для избирательного преобразования углеводорода в соответствующий гидропероксид.
Изобретение относится к нефтехимической промышленности и может быть использовано в процессе совместного получения окиси пропилена и стирола. .
Изобретение относится к нефтехимической промышленности и может быть использовано в процессе совместного получения окиси пропилена и стирола. .

Изобретение относится к реакторному устройству для получения гидроперекиси этилбензола окислением этилбензола кислородсодержащим газом (кислородом) и может быть использовано при получении соответственно гидроперекисей изобутана и изопентана.

Изобретение относится к нефтехимической промышленности и может быть использовано в процессе совместного получения оксида пропилена и стирола. .

Изобретение относится к способу получения алифатических и алкилароматических гидропероксидов, которые широко используют, например, в процессах эпоксидирования олефинов, при получении фенола и карбонильных соединений (ацетона, ацетальдегида и пр.).
Изобретение относится к циклическим углеводородам, в частности к получению гидропероксида циклогексил-п-ксилола, который может служить источником совместного получения ксиленола и циклогексанона и в качестве инициатора эмульсионной полимеризации непредельных углеводородов
Изобретение относится к нефтехимической промышленности и может быть использовано в процессе совместного получения окиси пропилена и стирола

Изобретение относится к получению гидропероксидов алкилароматических углеводородов, которые могут служить источником получения кислородсодержащих органических соединений (фенола, метилфенолов, ацетона, циклогексанона и др.) и в качестве инициатора эмульсионной полимеризации непредельных углеводородов
Изобретение относится к получению гидропероксида n-цимола, который может быть использован для совместного получения крезола и ацетона

Настоящее изобретение относится к способу выделения моноалкилбензола из газового потока, включающего кислород и моноалкилбензол, в котором газовый поток, включающий кислород и моноалкилбензол, вступает в контакт с жидким потоком, включающим нафталиновое соединение. Кроме того, настоящее изобретение относится к способу получения алкилфенилгидропероксида, включающему указанное выделение моноалкилбензола. Данный способ позволяет эффективно и селективно выделять моноалкилбензол. 2 н. и 10 з.п. ф-лы, 1 пр., 1 табл., 1 ил.
Изобретение относится к получению гидропероксида изопропил-м-ксилола, который может быть использован для совместного получения ксиленола и ацетона. Предложен способ получения гидропероксида изопропил-м-ксилола жидкофазным окислением изопропил-м-ксилола кислородом воздуха при атмосферном давлении, температуре процесса 120-130°C, в течение 1,5-2 часов, в присутствии в качестве катализатора N-гидроксифталимида в количестве 1-3 мас.%. В соответствии с предложенным способом содержание гидропероксида изопропил-м-ксилола составляет 16-21%. Данный катализатор исключает использование инициатора и щелочных добавок, что значительно упрощает процесс. При этом достигается высокая скорость окисления изопропил-м-ксилола: около 10-15% в час при селективности образования гидропероксида 95-97%. 3 пр.
Изобретение относится к нефтехимической промышленности, в частности к получению гидропероксида этилбензола (ГПЭБ) в процессе совместного получения стирола и оксида пропилена гидропероксидным методом. Более конкретно, оно относится к первой стадии этого процесса, на которой вырабатывают ГПЭБ жидкофазным окислением этилбензола молекулярным кислородом воздуха. В соответствии с изобретением получение гидропероксида этилбензола осуществляют жидкофазным каталитическим окислением этилбензола кислородом воздуха при повышенной температуре в присутствии катализатора и инициирующей добавки. В качестве катализатора и инициирующей добавки используют сконденсировавшуюся часть потока отработанного воздуха со стадии окисления этилбензола, обработанную гидроокисью аммония, или поток, образующийся при отмывке и нейтрализации продуктов реакции от кислых примесей гидроокисью аммония до рН 4-8. Избыточный неокисленный этилбензол отделяют вакуумной ректификацией при условии подачи в куб колонны воздуха, разбавленного азотом до содержания 8-12 об.% кислорода, а в укрепляющую часть ректификационной колонны - острого водяного пара. Технический эффект: содержание гидропероксида этилбензола в оксидате до 45 мас.% при селективности его образования более 90 мол.%. 2 пр.
Наверх