Способ обнаружения трещин на деталях вращения

Использование: для обнаружения трещин на деталях вращения. Сущность изобретения заключается в том, что наличие трещины на контролируемом изделии определяют при получении порогового сигнала вихретокового преобразователя, при этом деталь вращают, а вихретоковый преобразователь скользит по поверхности детали в окружном направлении, получают пороговый сигнал о наличии трещины, при условии, что сигналы от конструктивных концентраторов напряжений при данном расположении вихретокового преобразователя не достигают порогового сигнала, определяют частоту вращения детали, обеспечивающую выявление трещины, строят зависимость минимально-выявляемой длины трещины от частоты вращения детали, перед вращением контролируемого изделия, на котором вблизи концентратора напряжений установлен вихретоковый преобразователь, выбирают по полученной зависимости частоту вращения контролируемого изделия, которая обеспечивает выявление трещины установленной минимальной длины, при вращении контролируемого изделия, по поверхности которого скользит вихретоковый преобразователь в окружном направлении, с выбранной частотой вращения по сигналу вихретокового преобразователя определяют наличие трещины в концентраторе напряжений, если сигнал достигает порогового сигнала, по выявленной зависимости определяют по частоте вращения контролируемого изделия длину трещины, размер которой больше или равен минимально-выявляемой величине, и контролируемое изделие снимают с эксплуатации, если сигнал вихретокового преобразователя не достигает порогового сигнала, то контролируемое изделие допускается к очередному этапу эксплуатации до следующего контроля. Технический результат: возможность обнаружения определенной минимально-выявляемой величины трещины на начальном этапе ее появления, а также снижение времени, затрачиваемого на осуществление способа. 6 ил.

 

Изобретение относится к неразрушающему контролю, в частности к способам обнаружения трещин вихретоковым методом на деталях вращения (например, дисков, валов), и может найти применение в машиностроении, в частности авиадвигателестроении, для определения работоспособности деталей и установления оптимальной периодичности их контроля в эксплуатации по его результатам.

Как показывает практика, детали вращения, например диски, газотурбинных двигателей (ГТД) могут работать при наличии трещин докритического (безопасного) размера, что обеспечивается высокой пластичностью используемых материалов. Иногда продолжительность работы детали с трещиной сопоставима со временем работы до образования дефекта. Возможность работы детали с трещиной содержит в себе потенциал для увеличения ресурса с применением концепции безопасного развития трещины. При этом полный анализ долговечности базируется на оценке долговечности до образования начальной трещины и времени роста трещины до критического размера. На основании полученных данных назначается периодичность осмотров диска с отслеживанием роста трещины, и после достижения ее критического размера деталь отстраняется от эксплуатации.

Для определения максимально допустимой циклической наработки детали между двумя последовательными операциями контроля ее состояния используется размер трещины, который определяют с учетом чувствительности применяемых методов неразрушающего контроля.

Известен способ контроля изделия протяженной формы, при котором на изделие воздействуют электромагнитным преобразователем, изделие вращают и деформируют путем знакопеременного изгиба, так чтобы контролируемый участок изделия за один оборот испытывал последовательно растяжение и сжатие (Авторское свидетельство №922620 от 29.01.1980, опубл. 23.04.1982, Бюл. №15, МПК G01N 27/90).

Недостатками данного способа является то, что для осуществления способа требуется приложение знакопеременных нагрузок, что снижает работоспособность изделия.

Известен способ контроля изделия, при котором контролируемое сборное изделие устанавливают на поворотный стол таким образом, чтобы ось вращения изделия совпадала с осью вращения поворотного стола, вращают контролируемое сборное изделие на поворотном столе, при этом по поверхности контролируемого изделия скользит вихретоковый преобразователь, соединенный телескопическим механизмом с программируемым устройством (US 20120153941 от 02.03.2012, опубл. 21.06.2012, МПК G01N 27/90).

Недостатком данного способа является невозможность применения его в эксплуатации без разборки изделия, в которое контролируемое сборное изделие входит в качестве сборной единицы.

Наиболее близким является способ обнаружения трещин на деталях вращения, заключающийся в том, что вихретоковый преобразователь устанавливают на поверхность контролируемого изделия типа тела вращения, по меньшей мере, с одним концентратором напряжений, вращают контролируемое изделие, определяют наличие трещины по сигналу вихретокового преобразователя (Патент ЕР 2348311 от 14.10.2008, опубл. 22.04.2010, Бюл. №2010/16, МПК G01N 27/90).

Недостатком данного способа является то, что не определяется минимально-выявляемая величина трещины, что не позволяет установить оптимальную периодичность контроля изделия в эксплуатации, а также необходимость установки вихретокового преобразователя в непосредственном концентраторе напряжений на изделии, что может быть затруднительно ввиду сложности конструкции изделия.

Техническим результатом предлагаемого изобретения является возможность обнаружения определенной минимально-выявляемой величины трещины на начальном этапе ее появления для установления оптимальной периодичности контроля изделий в эксплуатации, а также снижение времени, затрачиваемого на осуществление способа, за счет того, что не требуется разборки изделия для осуществления способа.

Технический результат достигается тем, что вихретоковый преобразователь устанавливают на поверхность контролируемого изделия типа тела вращения, по меньшей мере, с одним концентратором напряжений, вращают контролируемое изделие, определяют наличие трещины по сигналу вихретокового преобразователя.

Новым в изобретении является то, что наличие трещины на контролируемом изделии определяют при получении порогового сигнала вихретокового преобразователя, при этом пороговый сигнал определяется при испытаниях, по меньшей мере, одной детали вращения, по крайней мере, с одним концентратором напряжения и, по меньшей мере, с одной трещиной или имитатором трещины, при которых на деталь устанавливают вблизи концентратора напряжений вихретоковый преобразователь, деталь вращают, при этом вихретоковый преобразователь скользит по поверхности детали в окружном направлении, и получают пороговый сигнал о наличии трещины, при условии, что сигналы от конструктивных концентраторов напряжений при данном расположении вихретокового преобразователя не достигают порогового сигнала, определяют частоту вращения детали, обеспечивающую выявление трещины, строят зависимость минимально-выявляемой длины трещины от частоты вращения детали, перед вращением контролируемого изделия, на котором вблизи концентратора напряжений установлен вихретоковый преобразователь, выбирают по полученной зависимости частоту вращения контролируемого изделия, которая обеспечивает выявление трещины установленной минимальной длины, при вращении контролируемого изделия, по поверхности которого скользит вихретоковый преобразователь в окружном направлении, с выбранной частотой вращения по сигналу вихретокового преобразователя определяют наличие трещины в концентраторе напряжений, если сигнал достигает порогового сигнала, по выявленной зависимости определяют по частоте вращения контролируемого изделия длину трещины, размер которой больше или равен минимально-выявляемой величине, и контролируемое изделие снимают с эксплуатации, если сигнал вихретокового преобразователя не достигает порогового сигнала, то контролируемое изделие допускается к очередному этапу эксплуатации до следующего контроля.

На чертежах показаны:

Фиг.1 - Схема установки вихретокового преобразователя.

Фиг.2 - Блок-схема осуществления способа обнаружения трещины.

Фиг.3 - Блок-схема испытания деталей с трещиной или с имитаторами трещин.

Фиг.4 - Зависимость минимально-выявляемой длины трещины от частоты вращения контролируемого изделия.

Фиг.5 - Пример установленного вихретокового преобразователя на торец диска вблизи паза с лопаткой.

Фиг.6 - Пример зависимости минимально-выявленной трещины на диске компрессора 1 ступени от скорости вращения диска.

Способ обнаружения трещины на контролируемом изделии типа тела вращения с применением вихретокового преобразователя осуществляется следующим образом.

Контролируемым изделием типа тела вращения в газотурбинном двигателе может быть диск компрессора с лопатками, вал, на котором установлен диск, и так далее.

Контролируемое изделие 1 имеет, по меньшей мере, один концентратор напряжений 2. Концентраторами напряжений 2 могут быть пазы диска под хвостовик лопатки 3, отверстия на дисках, шлицы на валу и так далее.

Для обнаружения трещины на контролируемом изделии 1 типа тела вращения вихретоковый преобразователь 4 устанавливают на поверхность изделия вблизи концентратора напряжений 2 (Фиг.1). Наличие трещины при вращении контролируемого изделия, по поверхности которого скользит вихретоковый преобразователь 4 в окружном направлении, определяется сигналом вихретокового преобразователя 4, равным пороговому сигналу (Фиг.2). Пороговый сигнал определяется в ходе испытаний, по меньшей мере, одной детали вращения, по крайней мере, с одним концентратором напряжений, и, по меньшей мере, с одной трещиной или с имитатором трещины.

Для проведения испытаний (Фиг.3) берут, по крайней мере, одну деталь вращения, по меньшей мере, с одним концентратором напряжений и, по крайней мере, с одной трещиной известной длины или имитатором трещины известной длины, полученный механическим путем в концентраторе напряжений.

На эту деталь устанавливают вихретоковый преобразователь вблизи концентратора напряжений. Деталь вращают, при этом вихретоковый преобразователь скользит по поверхности детали в окружном направлении. Получают пороговый сигнал о наличии трещины, при условии, что сигналы от конструктивных концентраторов напряжений, при данном расположении вихретокового преобразователя на детали, не достигают порогового сигнала. Определяют частоту вращения детали, обеспечивающую выявление трещины (Фиг.3).

Далее строят зависимость минимально-выявляемой длины трещины от частоты вращения детали (Фиг.4).

По полученной зависимости определяют частоту вращения ω, которая обеспечивает выявление трещины установленной минимальной длины. Вращают контролируемое изделие 1 с определенной частотой ω, при этом вихретоковый преобразователь 4 скользит по поверхности изделия 1 в окружном направлении (Фиг.1).

По сигналу вихретокового преобразователя 4 устанавливают наличие трещины в контролируемом изделии 1 (Фиг.2).

Если сигнал вихретокового преобразователя 3 достигает порогового сигнала, то по выявленной зависимости определяют по частоте вращения ω контролируемого изделия 1 длину трещины в концентраторе напряжений 2, размер которой больше или равен минимально-выявляемой величине, и контролируемое изделие 1 снимается с эксплуатации.

Если сигнал вихретокового преобразователя 4 не достигает порогового сигнала, то контролируемое изделие 1 допускается к очередному этапу эксплуатации до следующего контроля.

Пример осуществления способа.

В качестве контролируемого изделия используем диск компрессора 1 ступени двигателя Д-30КУ с 31 пазом под лопатку. Контроль диска производится в эксплуатации в составе двигателя Д-30КУ.

Детали данного типа являются высоконагруженными деталями с концентраторами напряжений в замковом соединении типа «ласточкин хвост».

Для обнаружения трещины на контролируемом диске 1 вихретоковый преобразователь 4 устанавливают на торец диска вблизи паза 2 под лопатку 3 (Фиг.5). Наличие трещины при вращении контролируемого диска 1, по поверхности которого скользит вихретоковый преобразователь 4 в окружном направлении, определяется сигналом вихретокового преобразователя 4, равным пороговому сигналу. Пороговый сигнал определяется в ходе испытаний аналогичного диска с имитаторами трещин различной длины: 0.5, 0.7, 1.0, 1.5 мм.

На диск с имитаторами трещин устанавливают вихретоковый преобразователь вблизи паза под лопатку на торец диска.

Этот диск вращают с разной частотой вращения (1, 4, 6 об/мин), при этом вихретоковый преобразователь скользит в окружном направлении по поверхности диска с имитаторами трещин. Получают пороговый сигнал о наличии трещины, при этом сигналы от пазов под лопатки, при данном расположении вихретокового преобразователя на диске, не достигают порогового сигнала. Результаты испытаний представлены в таблице 1.

Таблица 1
Испытание диска с имитаторами трещин с помощью вихретокового преобразователя
Частота вращения детали с имитаторами трещин ω, об/мин Длина трещины по торцу, мм
0.5 0.7 1.0 1.5
1 Не выявлен Не выявлен Выявлен Выявлен
4 Не выявлен Выявлен Выявлен Выявлен
6 Выявлен Выявлен Выявлен Выявлен

Далее строим зависимость минимально-выявляемой длины трещины от частоты вращения диска с имитаторами трещин (Фиг.6).

По полученной зависимости определяют частоту вращения ω контролируемого диска - это частота вращения 6 об/мин.

Вращают контролируемый диск 1 с этой частотой вращения. При этом при данной частоте вращения выявляются трещины длиной от 0,5 мм.

Получили пороговый сигнал на пазах 2 под лопатку 3 под номерами 1, 15, 24. Это свидетельствует о том, что в данных концентраторах напряжений имеются трещины длиной от 0.5 мм, что не допускается для дальнейшей эксплуатации диска, и диск 1 снимают с эксплуатации.

Способ обнаружения трещин на деталях вращения, заключающийся в том, что вихретоковый преобразователь устанавливают на поверхность контролируемого изделия типа тела вращения, по меньшей мере, с одним концентратором напряжений, вращают контролируемое изделие, определяют наличие трещины по сигналу вихретокового преобразователя, отличающийся тем, что наличие трещины на контролируемом изделии определяют при получении порогового сигнала вихретокового преобразователя, при этом пороговый сигнал определяется при испытаниях, по меньшей мере, одной детали вращения, по крайней мере, с одним концентратором напряжения и, по меньшей мере, с одной трещиной или имитатором трещины, при которых на деталь устанавливают вблизи концентратора напряжений вихретоковый преобразователь, деталь вращают, при этом вихретоковый преобразователь скользит по поверхности детали в окружном направлении, и получают пороговый сигнал о наличии трещины, при условии, что сигналы от конструктивных концентраторов напряжений при данном расположении вихретокового преобразователя не достигают порогового сигнала, определяют частоту вращения детали, обеспечивающую выявление трещины, строят зависимость минимально-выявляемой длины трещины от частоты вращения детали, перед вращением контролируемого изделия, на котором вблизи концентратора напряжений установлен вихретоковый преобразователь, выбирают по полученной зависимости частоту вращения контролируемого изделия, которая обеспечивает выявление трещины установленной минимальной длины, при вращении контролируемого изделия, по поверхности которого скользит вихретоковый преобразователь в окружном направлении, с выбранной частотой вращения по сигналу вихретокового преобразователя определяют наличие трещины в концентраторе напряжений, если сигнал достигает порогового сигнала, по выявленной зависимости определяют по частоте вращения контролируемого изделия длину трещины, размер которой больше или равен минимально-выявляемой величине, и контролируемое изделие снимают с эксплуатации, если сигнал вихретокового преобразователя не достигает порогового сигнала, то контролируемое изделие допускается к очередному этапу эксплуатации до следующего контроля.



 

Похожие патенты:

Использование: для дефектоскопии технологических трубопроводов. Сущность изобретения заключается в том, что комплекс дефектоскопии технологических трубопроводов состоит из: подвижного модуля, бортовой электронной аппаратуры, бортового компьютера; датчиков дефектов; одометров; троса; наземной лебедки с барабаном для троса; бортового источника электропитания; наземного компьютера; при этом в него ведены: первый и второй направляющие конусы, несколько опорно-ходовых манжет, несколько групп ходовых пружинных узлов (ХПУ), несколько групп прижимных пружинных узлов (ППУ), несколько групп ультразвуковых датчиков системы неразрушающего контроля (УДСНК), несколько групп толкателей, несколько ультразвуковых эхолокаторов, несколько контроллеров управления прижимными пружинными узлами, несколько контроллеров управления ходовыми пружинными узлами, первый радиомодем, второй радиомодем, несколько контроллеров управления ультразвуковыми датчиками системы неразрушающего контроля (КУУДСНК).

Использование: для диагностики устройств контроля схода подвижного состава (УКСПС). Сущность изобретения заключается в том, что контроль производят методом магнитной памяти металла (МПМ) и вихретоковым методом (ВТМ), о непригодности элементов судят при обнаружении дефектов в элементе одним из методов, при этом дефектом при контроле методом МПМ является наличие локальных зон с измененной структурой материала, имеющих высокие механические напряжения, градиент напряженности собственных магнитных полей рассеяния которых не превышает эталонное значение 5*104 А/м2 на разрушаемых элементах цилиндрической формы, а на элементах плоской формы - 13*104 А/м2, а дефектом при контроле ВТМ является наличие микротрещин в разрушаемом элементе с раскрытием более 0,05 мм.

Изобретение относится к области неразрушающего контроля и может быть использовано при диагностике неразъемных соединений, в частности для контроля качества паяных соединений камер сгорания и сопел жидкостных ракетных двигателей.

Изобретение относится к области контроля технического состояния обсадных колонн, насосно-компрессорных труб и других колонн нефтяных и газовых скважин. Техническим результатом является повышение точности и достоверности выявления наличия и местоположения поперечных и продольных дефектов конструкции скважины и подземного оборудования как в магнитных, так и в немагнитных первом, втором и последующих металлических барьерах.

Настоящее изобретение относится к датчику (6) для мониторинга с помощью вихревых токов поверхности круговой канавки (2), сформированной в диске (1) турбореактивного двигателя.

Изобретение относится к геофизическим исследованиям в скважине и может быть применено при электромагнитной дефектоскопии многоколонных конструкций стальных труб.

Изобретение относится к способу определения и оценки трещин в испытываемом объекте из электропроводного материала. Способ включает: нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой (f), определение вихревых токов, индуцированных в испытываемом объекте, вдоль предварительно определенных параллельных измерительных путей на участке (10) поверхности испытываемого объекта, обеспечение сигналов вихревых токов, причем каждый сигнал вихревых токов соответствует измерительному пути, преобразование (14) сигналов вихревых токов и предоставление преобразованных измеренных величин как функции измерительного пути, частоты (f) и положения (s) вдоль измерительного пути, интерпретация (16) преобразованных измеренных величин с применением преобразованных измеренных величин, по меньшей мере, одного соседнего измерительного пути, и предоставление сигналов трещин со скорректированной амплитудой и/или положением пути по отношению к преобразованным измеренным величинам.

Изобретение относится к неразрушающему контролю и может быть использовано для выявления подповерхностных дефектов в ферромагнитных объектах. Сущность изобретения заключается в том, что в предлагаемом способе контролируемый объект намагничивают постоянным магнитным полем, возбуждают с помощью вихретокового преобразователя на контролируемом участке вихревые токи, регистрируют вносимое в вихретоковый преобразователь напряжение U _ в н и по нему судят о наличии дефектов, и согласно изобретению путем изменения параметра Р, регулирующего воздействие постоянного магнитного поля на контролируемый объект, плавно изменяют напряженность Н постоянного магнитного поля от минимальной величины до максимальной, регистрируют максимум Uмax амплитуды вносимого в вихретоковый преобразователь напряжения U _ в н и величину соответствующего ему значения параметра Р, а параметры дефекта оценивают по совокупности значений Uмах и Р.

Изобретение относится к неразрушающему контролю методом вихревых токов и может быть использовано для дефектоскопии и контроля электрических, магнитных и геометрических свойств объектов из электропроводящих материалов.

Изобретение относится к измерительной технике. .

Использование: для неразрушающего контроля изделий посредством вихревых токов. Сущность изобретения заключается в том, что установка для неразрушающего контроля дефектов в проверяемом изделии посредством вихревых токов содержит катушку возбуждения (14), на которую может подаваться сигнал (SE) возбуждения для воздействия на проверяемое изделие (16) переменным электромагнитным полем, аналого-цифровой преобразователь (21), фильтрующее устройство (22), вход которого соединен с аналого-цифровым преобразователем (21) и которое выполнено с возможностью осуществления полосовой фильтрации, демодулятор (27), вход которого соединен с выходом указанного фильтрующего устройства (22), приемную катушку (17), предназначенную для формирования сигнала (SP) катушки, зависящего от дефекта в проверяемом изделии (16), причем вход аналого-цифрового преобразователя (21) соединен с приемной катушкой (17), причем фильтрующее устройство (22) выполнено с возможностью уменьшения частоты сканирования. Технический результат: повышение точности определения дефектов в проверяемом изделии. 2 н. и 13 з.п. ф-лы, 10 ил.

Изобретение относится к измерительной технике. Сущность: устройство обнаружения дальнего поля вихревых токов вводится в цилиндрические трубы и перемещается по ним. Устройство может быть использовано для измерения толщины трубы и содержит излучающую рамку и множество симметрично расположенных приемных устройств по противоположным сторонам излучающей рамки, схему для возбуждения излучающей рамки, схему для приема сигнала от каждого приемного устройства и для обработки указанного сигнала с исключением двойной индикации дефектов. Сигнал является свернутым сигналом, пропорциональным толщине трубы вблизи каждого из приемных устройств. Множество симметрично расположенных приемных устройств представляют собой две пары рамок. Каждая пара расположена по каждую сторону излучающей рамки на расстоянии L1=k1×dz и L2=k2×dz, где k1 и k2 не имеют общего делителя и dz является длиной шага вдоль продольной оси установки. Удаление ложных дефектов из измерений содержит определение линейной комбинации сигналов множества симметрично размещенных приемных рамок. Технический результат: возможность удаления ложных артефактов. 2 н. и 7 з.п. ф-лы, 8 ил., 1 табл.

Предложение относится к неразрушающему контролю и может быть использовано для дефектоскопии и измерения толщины стенки полых деталей типа лопаток газотурбинных двигателей, выполненных как из металла, так и полностью или частично выполненных из керамики. Способ электромагнитного контроля полой детали типа лопатки 1 газотурбинного двигателя заключается в том, что на поверхность лопатки устанавливают электромагнитный преобразователь 2, заполняют внутренние полости 7 лопатки 1 средой 9, содержащей равномерно распределенные ферромагнитные частицы, например магнитной жидкостью, перемещают электромагнитный преобразователь 2 по поверхности лопатки 1, регистрируют с помощью электронного блока 3 изменяющиеся в процессе перемещения выходные сигналы электромагнитного преобразователя 2 и по ним судят о наличии дефектов со стороны внутренней поверхности полостей 7 и о толщине оболочки. 5 з.п. ф-лы, 5 ил.

Изобретение относится к устройству для регистрации дефектов (23) в контролируемом образце (13), перемещаемом относительно предлагаемого устройства, при неразрушающем и бесконтактном контроле, причем передающие катушки (18) намагничивают образец периодическими переменными электромагнитными полями, улавливающие катушки (15) регистрируют периодический электрический сигнал, содержащий несущее колебание, при этом, когда дефект регистрируется улавливающими катушками, наличие этого дефекта в контролируемом образце способствует формированию характерной амплитуды и/или фазы сигнала, каскад аналого-цифровых преобразователей преобразует сигнал улавливающей катушки в цифровую форму, блок (17, 19, 35, 37, 52, 60, 68, 74, 76, 78, 80, 88, 90, 94) обработки сигналов создает полезный сигнал из сигнала улавливающей катушки, преобразованного в цифровую форму, блок (60, 50, 64) обработки результатов обрабатывает полезный сигнал с целью обнаружения дефекта в контролируемом образце. В соответствии с изобретением посредством блока обработки сигналов путем осуществления контроля формы кривой преобразованного в цифровую форму сигнала улавливающей катушки определяют перемодуляцию каскада аналого-цифровых преобразователей сигналом улавливающей катушки, а затем путем математической аппроксимации преобразованного в цифровую форму сигнала улавливающей катушки восстанавливают часть сигнала, срезанную каскадом аналого-цифровых преобразователей. Технический результат - расширение диапазона измерений, увеличение вероятности быстрой локализации ошибки. 2 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к устройству для регистрации дефектов в контролируемом образце, перемещаемом относительно предлагаемого устройства, при неразрушающем и бесконтактном контроле, которое имеет блок передающих катушек, содержащий по меньшей мере одну передающую катушку, предназначенную для намагничивания контролируемого образца периодическими переменными электромагнитными полями, блок улавливающих катушек, содержащий по меньшей мере одну улавливающую катушку, предназначенную для регистрации периодического электрического сигнала, содержащего несущее колебание, при этом когда дефект регистрируется улавливающими катушками, наличие дефекта в контролируемом образце способствует формированию характерной амплитуды и/или фазы сигнала, блок обработки сигналов, предназначенный для формирования полезного сигнала из сигнала улавливающей катушки, и блок обработки результатов, предназначенный для обработки полезного сигнала с целью обнаружения дефектов в контролируемом образце. В устройстве предусмотрен блок самотестирования, предназначенный для осуществления автоматически или по внешнему запросу систематического количественного контроля функций обработки сигналов блока обработки сигналов и/или систематического количественного контроля передающих катушек и/или улавливающих катушек и/или для осуществления по внешнему запросу калибровки блока обработки сигналов посредством калибровочного эталона, устанавливаемого вместо передающих и/или улавливающих катушек. Изобретение обеспечивает высокую надежность результатов проверки, так как обеспечена возможность точного выявления неисправностей в отдельных электронных компонентах устройства. 2 н. и 16 з.п. ф-лы, 5 ил.

Изобретение относится к области неразрушающего контроля методом вихревых токов. Способ заключается в том, что измерителем возбуждают в изделии электромагнитное поле гармоническим сигналом u1(ωt), получают сигнал u2(ωt), пропорциональный электромагнитному полю вихревых токов, наведенному в изделии, оценивают фазовый сдвиг Δφ сигнала u2(ωt) относительно u1(ωt), по которому судят о толщине покрытия. При изготовлении измерителя градуируют его, для чего измеряют фазовые сдвиги Δφ на мерных образцах с известной толщиной покрытия Тп и определенным типом стального основания, сохраняют градуировочную характеристику Δφ1(Тп). Перед измерениями калибруют прибор, для чего измеряют кажущуюся толщину покрытия изделия без покрытия на другом стальном основании. Рассчитывают градуировочную характеристику Δφ2(Тп) для изделий на таком основании и используют ее при измерениях. Измерительный комплекс состоит из вихретокового преобразователя, содержащего сердечник с обмотками возбуждения, фазового детектора, схемы балансировки, контролируемого изделия и компьютера, выполненного в виде микроконтроллера. Технический результат - повышение точности. 2 ил.

Изобретение относится к неразрушающему контролю качества материалов и изделий и может быть использовано для измерения толщины немагнитных металлических покрытий на диэлектрической основе или на немагнитной основе с другой удельной электрической проводимостью. Технический результат заключается в повышении чувствительности и точности измерения толщины электропроводных покрытий. Устройство содержит генератор возбуждающего сигнала, вихретоковый трансформаторный преобразователь с ферритовым сердечником, обмоткой возбуждения и встречно включенными измерительной и компенсационной обмотками, средняя точка которых соединена с нулевой цепью, первый и второй усилители, фазовый детектор, фильтр низкой частоты, амплитудный детектор и микроконтроллер с аналого-цифровым преобразователем. Указанный технический результат достигается применением двух конденсаторов в компенсирующей и измерительной обмотках для обеспечения резонансного режима работы вихретокового трансформаторного преобразователя, а также двухканального аналогового переключателя с коммутатором напряжения для переключения измерительных каналов с вычислением разности результатов измерений за два такта преобразования. 1 ил.

Изобретение относится к измерительной техники, конкретно к способам неразрушающего контроля, и позволяет повысить точность определения параметров дефектов. Снимают годографы влияния зазора между преобразователем и объектом контроля на сигнал на бездефектном участке настроечного образца и на участке этого образца с калибровочным дефектом известной величины. Годографы представлены на комплексной плоскости вносимых напряжений Im (Uвн) и Re (Uвн). Кривая 1 - годограф влияния зазора над бездефектным участком настроечного образца. Точка А соответствует положению преобразователя непосредственно на настроечном образце, а точка Н - на расстоянии, где влиянием настроечного образца можно пренебречь. Кривая 2 - годограф влияния зазора на участке настроечного образца с калибровочным дефектом известной величины. Снимают годограф влияния зазора на сигнал на бездефектном участке объекта контроля, показанный кривой 3. Если между направлениями годографов 1 и 3 угол составляет величину Ф, то изменяют фазу тока возбуждения на этот угол Ф так, чтобы годографы влияния зазора на бездефектных участках настроечного образца и объекта контроля совпали и потом осуществляют контроль объекта. 1 ил.

Изобретение относится к устройствам контроля вихревыми токами для определения дефектов на поверхности или на малой глубине детали, в частности лопасти вентилятора авиационного двигателя. Устройство содержит зонд (20), в котором размещен датчик (21), при этом зонд установлен с возможностью поворота на конце рукоятки (27), а направляющая (29) имеет базовую поверхность (31) и средства контролируемого регулирования положения направляющей параллельно оси трубки. При этом упомянутая направляющая (29) имеет форму муфты, коаксиальной упомянутой рукоятке (27), из которой выступает упомянутый зонд, при этом один из концов муфты имеет кольцевую поверхность, образующую упомянутую базовую поверхность (31). Технический результат - создание устройства, являющегося простым при манипулировании и легко адаптируемым для неразрушающего контроля деталей, имеющих сложную форму. Кольцевая базовая поверхность может быть приспособлена к любым поверхностям, и устройство имеет возможность поворота относительно его продольной оси. 7 з.п. ф-лы, 5 ил.

Настоящее изобретение относится к устройству производимого без демонтажа неразрушающего контроля конструктивных элементов двигателя, в частности турбомашины. Устройство (10) производимого без демонтажа неразрушающего контроля конструктивных элементов двигателя турбомашины, содержащее трубку (12), на дистальном конце которой установлен палец (14), который удерживает на одном из своих концов пластинку (16) поддержки инструмента контроля (18), а на своем противоположном конце лапку (20) поддержки и (или) зацепления на конструктивном элементе двигателя; причем эта лапка перемещается в направлении (30), параллельном продольной оси пальца. Технический результат - разработка устройства неразрушающего контроля, позволяющего осуществлять контроль конструктивных элементов независимо от их положения в турбомашине и доступности и твердо удерживать инструмент или датчик контроля на этапе контроля. 11 з.п. ф-лы, 8 ил.
Наверх