Балансировка ротора турбины при пониженном давлении

Группа изобретений относится к балансировочной технике, в частности к средствам и методам балансировки роторов турбин. Устройство содержит внешний компонент, внутренний компонент, который винтовым образом соединен с внешним компонентом, при этом внутренний компонент ограничивает камеру, которая содержит первое и второе отверстия и содержит нижнюю поверхность, которая снабжена уплотнительным соединением и крышкой для закрывания герметичным образом первого отверстия камеры. Соединение между внешним компонентом и внутренним компонентом является винтовым, то есть является результатом операции нарезки резьбы. Поэтому внутренний компонент может, таким образом, двигаться коаксиальным образом относительно внешнего компонента. Способ включает в себя следующие этапы - остановки турбины, ориентации путем расположения балансировочного отверстия напротив второго отверстия камеры устройства для введения балансировочного груза, осуществления контакта поверхности уплотнительного соединения внутреннего компонента в контакт с ротором с использованием гайки, открытие камеры устройства с удалением крышки, введение груза в отверстие ротора через камеру устройства и позиционирование груза путем ввинчивания и запирания путем зачеканки в балансировочном отверстии, далее установки крышки для закрытия первого отверстия камеры, и отсоединяют камеру от ротора, используя гайку, возвращают турбину в работу. Технический результат заключается в устранении разгерметизации корпуса турбины, ускорении процесса установки грузов. 3 н. и 7 з.п. ф-лы, 4 ил.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к системе для балансировки ротора турбины.

УРОВЕНЬ ТЕХНИКИ

При работе, обычно на атомной электростанции, ротор паровой турбины низкого давления вращается примерно при 1500 об/мин (оборотах в минуту).

Различные напряжения, которым подвергается ротор, могут вносить дисбаланс, который создает вибрации, которые могут оказывать отрицательные воздействия на компоненты турбины.

Поэтому балансировкой ротора регулярно управляют для предотвращения какого бы то ни было «эффекта дисбаланса».

Для того чтобы преодолеть это, ротор турбины обычно содержит балансировочные отверстия, которые расположены вокруг ротора, и в которые можно вставлять один или больше грузов для восстановления баланса ротора.

Обычно для того, чтобы вставить эти грузы, необходимо остановить турбину и открыть, по меньшей мере, часть корпуса турбины. Кроме того, в турбине низкого давления, чей выпуск функционирует при низком давлении (то есть при нескольких миллибарах), когда корпус открыт, также необходимо прервать пониженное давление.

Воздух, исходящий извне при атмосферном давлении и вводимый в турбину, в долгосрочном периоде может привести к коррозии некоторых элементов.

Таким образом, операции, касающиеся перебалансировки ротора турбины, представляют собой проблемы, включающие сложное и очень длительное техническое обслуживание (порядка трех недель). Грузы представляют собой элементы, которые имеют размеры порядка десятков сантиметров и которые весят несколько килограмм (обычно между 2 и 6 кг).

Настоящее изобретение предназначено для преодоления, по меньшей мере, некоторых из этих недостатков, обеспечивая возможность технического вмешательства без прерывания пониженного давления, а также более простым и быстрым образом, оказывая минимальное воздействие на работу и конструкцию турбины.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Для этого в соответствии с первым аспектом изобретения предложено устройство для введения балансировочных грузов, содержащее внешний компонент и внутренний компонент, который соединен винтовым образом с внешним компонентом, при этом внутренний компонент ограничивает камеру, которая содержит первое и второе отверстия и нижнюю поверхность, которая снабжена уплотнительным соединением и крышкой, чтобы закрывать герметичным образом первое отверстие камеры. Соединение между внешним компонентом и внутренним компонентом является винтовым, то есть образуется в результате операции нарезки резьбы. Поэтому внутренний компонент может, таким образом, двигаться коаксиальным образом относительно внешнего компонента.

Термин «крышка» предназначен для указания любого средства, которое позволяет закрывать первое отверстие.

Таким образом, после того, как устройство было прикреплено к турбине, когда это устройство отсоединяется, то есть когда внутренний компонент находится в верхнем положении так, что он удален от ротора, внутреннее окружение турбины и камера находятся под пониженным давлением (то есть менее нескольких миллибар) и это пониженное давление при вставке груза требуется сохранить.

Для этого устройство соединяют, то есть внутренний компонент устройства прямолинейно перемещается вращением внутреннего компонента во внешнем компоненте винтового соединения таким образом, что входит в контакт с ротором турбины в ее остановленном состоянии.

Для того чтобы наилучшим образом гарантировать герметичный контакт, предпочтительно, чтобы нижняя поверхность внутреннего компонента, который входит в контакт с ротором, была снабжена соединением.

После того как устройство будет соединено, можно будет открыть камеру, чтобы вставить груз. Камера при этом, пока внутреннее окружение турбины остается под пониженным давлением, находится при атмосферном давлении.

Соединение, предпочтительно, является плоским и закрывает по меньшей мере участок нижней поверхности вокруг второго отверстия внутреннего компонента, что позволяет получить большую контактную поверхность, а это позволяет улучшить уплотнение.

В соответствии с предпочтительным вариантом осуществления крышка удерживается на первом отверстии камеры по меньшей мере двумя винтами, что позволяет отвинчивать крышку для позволения входа воздуха и приведения камеры к атмосферному давлению. Поскольку камера находится под пониженным давлением, то давление на крышку является значительным, и действие двух винтов позволяет ограничить приложенное усилие.

В соответствии с предпочтительным вариантом осуществления устройство содержит по меньшей мере один направляющий элемент, чтобы направлять внутренний компонент относительно внешнего компонента. Для того чтобы обеспечить эффективное направление, этот элемент позволяет внутреннему компоненту оставаться на одной линии с внешним компонентом и, соответственно, облегчает его перемещение от одного положения до другого.

Винтовое соединение образовано гайкой, которая может взаимодействовать с внешним компонентом для направления прямолинейного перемещения. Гайка расположена на соединительном компоненте и удерживается закрепленной с внешним компонентом посредством кольца.

В соответствии с другим аспектом настоящее изобретение относится также к турбине, которая содержит по меньшей мере один ротор, который содержит по меньшей мере одно балансировочное отверстие и устройство для введения балансировочного груза, как это определено выше.

Предпочтительно, устройство прикреплено к внешнему корпусу турбины. В этом случае образованное в корпусе отверстие также можно закрыть крышкой.

Балансировочное отверстие, предпочтительно, по меньшей мере частично является резьбовым, в то время как резьбовым является и участок профиля груза. Груз вставляется посредством ввинчивания и удерживается посредством зачеканки.

Наконец, настоящее изобретение относится к способу введения груза устройством для введения балансировочных грузов, как оно определено выше, характеризуемому тем, что последовательно включает в себя следующие этапы, на которых:

турбину останавливают;

ротор ориентируют таким образом, чтобы балансировочное отверстие располагалось напротив второго отверстия камеры устройства;

используют гайку, устройство соединяют с ротором, таким образом, чтобы снабженная уплотнительным соединением внутреннего компонента поверхность была в контакте с ротором;

открывают камеру устройства воздействием на два винта посредством удаления крышки, которая закрывает первое отверстие камеры, что заполняет камеру воздухом;

вставляют груз в отверстие ротора через камеру устройства и посредством завинчивания позиционируют, затем его запирают в этом положении посредством зачеканки в балансировочном отверстии, которая взаимодействует с резьбой, которая присутствует на грузе;

повторно устанавливают крышку для закрывания первого отверстия камеры;

устройство отсоединяют от ротора посредством гайки;

турбину вновь запускают в работу.

Этот способ может включать в себя дополнительные этапы. Например, если устройство содержит также гайку, и/или отверстие, выполненное в корпусе, закрыто колпаком, то тогда необходимо также, - в том случае, к которому это относится, - снять колпак с отверстия корпуса, затем гайку, прежде чем снимать крышку; затем повторно установить гайку, а затем - колпак после повторной установки крышки.

Изобретение будет более понятно, а его преимущества будут оценены более полно по прочтении нижеследующего подробного описания, приведенного в виде неограничивающего примера, со ссылками на приложенные чертежи.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 показывает устройство в соответствии с изобретением в разъединенном положении.

Фиг.2 показывает устройство в соединенном положении.

Фиг.3 показывает соединенное устройство в открытом состоянии, с возможностью приема груза.

Фиг.4 показывает участок турбины низкого давления с закрытым устройством, частично проиллюстрированным в соответствии с разъединенным положением, а частично - в соединенном положении.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Турбина 4 содержит окружающее пространство 45, которое находится под низким давлением (которое можно видеть на фиг.4), то есть несколько миллибар.

В оставшейся части описания будет предполагаться, что верх есть внешняя сторона турбины 4, а низ есть внутренняя сторона турбины 4.

Устройство 1 по настоящему изобретению содержит, главным образом, внешний компонент 12 и внутренний компонент 11. Внутренний компонент 11 и внешний компонент 12 соединены между собой посредством винтового соединения.

Внешний компонент 12 прикреплен к внешнему корпусу 41 турбины 4 посредством промежуточного компонента 42, который содержит цилиндрическую стенку.

Внутренний компонент 11 может прямолинейно перемещаться относительно внешнего компонента 12, так чтобы он мог соединять устройство 1 с ротором 43 турбины 4 напротив балансировочного отверстия 44 или отсоединять его от него. Соединительный компонент 16 расположен на внешнем компоненте 12 и удерживается кольцом 17, которое прикреплено к внешнему компоненту 12. Этот соединительный компонент 16 является резьбовым и представляет собой гайку. Резьба 15 соединительного компонента 16 взаимодействует с внутренним компонентом 11, который содержит ответную резьбу 14. Соединительный компонент 16 приводится в движение посредством инструмента 2.

Движение двух компонентов 11 и 12 выполняется благодаря этому винтовому соединению типа винт-гайка. Соединительный компонент 16 поворачивается на внешнем компоненте 12, резьба 15 опускает внутренний компонент 11 посредством его резьбы 14, и компонент 11 фиксируется с участием прямолинейного перемещения направляющих элементов 13. Эти направляющие элементы 13 позволяют удерживать внутренний компонент 11 таким образом, чтобы вращение соединительного компонента 16 опускало этот внутренний компонент 11. Поэтому внутренний компонент 11 остается, таким образом, в вертикальном положении и не вращается.

Внутренний компонент 11 ограничивает камеру 5, которая содержит два отверстия: первое отверстие 51 расположено вверху, а нижнее отверстие 52 расположено внизу.

Внутренний компонент 11 содержит также нижнюю поверхность 53, которая со стороны отверстия 52 снабжена соединением 54.

Нижняя поверхность 53 является поверхностью, которая находится в контакте с ротором, когда устройство 1 подсоединено. Это соединение обеспечивает лучшее уплотнение. Контакт между поверхностью 53 и ротором 42 устанавливается посредством соединения 54.

Внутренний компонент 11 закрыт крышкой 3. Эта крышка 3 удерживается крепежными винтами, которые не показаны, а два винта 31 позволяют ее открывать.

Балансировочное отверстие 44 - преимущественно, по меньшей мере, частично является резьбовым с резьбой 440. Таким образом, когда турбина находится в рабочем состоянии, груз вводится в отверстие благодаря ответной резьбе, и фиксируется в положении посредством зачеканки. То есть можно сказать, что по внешней поверхности груза наносятся удары для того, чтобы деформировать ее, чтобы зафиксировать ее по месту и для того, чтобы она могла противостоять центробежной силе.

Цилиндрическая стенка 42 образует пространство 46, которое с одной стороны закрыто колпаком 47, который прикреплен к корпусу 41 посредством винтов 48, а с другой стороны - крышкой 3 устройства 1.

Одной из целей настоящего изобретения является сохранение пониженного давления в окружающем пространстве 45, когда устройство соединено с тем, чтобы вставить груз (не показан) в балансировочное отверстие 44.

Когда устройство 1 разъединено, балансировочное отверстие 44 и камера 5 также находятся под пониженным давлением.

Для того чтобы соединить устройство 1, когда турбина остановлена и когда ротор ориентирован таким образом, что балансировочное отверстие 44 располагается напротив второго отверстия 52 камеры 5, открывают колпак 47, что открывает доступ к крышке 3, сначала проворачивают соединительный компонент 16, его поворот вызывает прямолинейное перемещение внутреннего компонента 11 во внешнем компоненте 12. Когда внутренний компонент 11 плотно упрется в ротор 43, винты 31 действуют таким образом, чтобы расцепить крышку 3 с внутренним компонентом 11, чтобы привести камеру 5 к атмосферному давлению и освободить балансировочное отверстие 44. Затем необходимо просто ввернуть груз (не показан) в резьбу 440 балансировочного отверстия 44.

Контакт между нижней поверхностью 53 и ротором 43 позволяет, таким образом, сохранить в окружающем пространстве 45 пониженное давление, чему далее способствует наличие на этой поверхности 53 уплотнительного соединения 54.

В соответствии с проиллюстрированным вариантом осуществления уплотнительное соединение 54 соответствует форме ротора и закрывает всю поверхность 53 вокруг второго отверстия 52.

Цилиндрическая стенка имеет поперечное сечение, которое, предпочтительно, идентично поперечному сечению устройства 1, например, круговое. Она крепится к корпусу 41 турбины 4 посредством штырей или болтов, а к внешнему компоненту 12 - посредством сварки.

Для возврата устройства 1 к низкому давлению и перезапуска турбины операции выполняют в обратном порядке.

Преимущество такого устройства заключается в том, что оно, таким образом, может быть легко встроено в существующую турбину предыдущего уровня техники.

1. Устройство (1) для введения балансировочного груза в ротор (43) турбины (4), содержащее:
внешний компонент (12),
внутренний компонент (11), который винтовым образом соединен с внешним компонентом (12),
при этом внутренний компонент (11) ограничивает камеру (5), которая имеет первое (51) и второе (52) отверстия и содержит нижнюю поверхность (53), которая снабжена уплотнительным соединением (54) и крышкой (3) для закрывания герметичным образом первого отверстия (51) камеры (5).

2. Устройство (1) по п.1, в котором соединение (54) является плоским и закрывает по меньшей мере участок нижней поверхности (53) вокруг второго отверстия (52) внутреннего компонента (11).

3. Устройство (1) по п.1 или 2, в котором крышка (3) удерживается на первом отверстии (51) камеры (5) по меньшей мере двумя винтами (31).

4. Устройство (1) по п.1, содержащее по меньшей мере один направляющий элемент (13), выполненный с возможностью направления внутреннего компонента (11) относительно внешнего компонента (12).

5. Устройство (1) по п.1, в котором винтовое соединение образовано гайкой (2).

6. Турбина (4), содержащая по меньшей мере один ротор (43), имеющий по меньшей мере одно балансировочное отверстие (44), при этом она содержит устройство (1) для введения балансировочного груза по любому из пп.1-5.

7. Турбина (4) по п.6, в которой устройство (1) прикреплено к внешнему корпусу (41) турбины (4).

8. Турбина (4) по п.6, в которой балансировочное отверстие (44) по меньшей мере частично является резьбовым.

9. Турбина (4) по п.7, в которой балансировочное отверстие (44) по меньшей мере частично является резьбовым.

10. Способ введения балансировочного груза в ротор (43) турбины (4) с использованием устройства (1) по любому из пп.1-5, при этом способ включает в себя последовательные этапы, на которых:
останавливают турбину (4);
ориентируют ротор (43) таким образом, чтобы балансировочное отверстие (44) располагалось напротив второго отверстия (52) камеры (5) устройства (1);
приводят поверхность (53) уплотнительного соединения (54) внутреннего компонента (11) в контакт с ротором (43) с использованием гайки (2);
открывают камеру (5) устройства посредством воздействия на два винта (31), чтобы удалить крышку (3), которая закрывает первое отверстие (51) камеры (5), тем самым заполняя камеру (5) воздухом;
вводят груз в отверстие (44) ротора (43) через камеру (5) устройства (1), позиционируют груз посредством ввинчивания и запирания груза на месте посредством зачеканки в балансировочном отверстии (44), которое взаимодействует с резьбой, присутствующей на грузе;
повторно позиционируют крышку (3) для закрывания первого отверстия (51) камеры (5);
используют гайку для отсоединения устройства (1) от ротора (43);
возвращают турбину (1) в работу.



 

Похожие патенты:

Изобретение относится к области измерительной техники, в частности к способам измерения моментов инерции, и может быть использовано для измерения моментов инерции различных изделий.

Заявленные изобретения относятся к машиностроению и могут использоваться для динамической балансировки различных изделий. Способ заключается в том, что изделие приводят во вращение на платформе, установленной на центральной шарнирной опоре на вращающемся столе, и измеряют динамические реакции между платформой и столом.

Изобретение относится к области измерений, а именно к процессу определения статического дисбаланса заготовок, и может быть использовано для балансировки заготовок.

Турбинная установка содержит роторную машину (12, 14, 24) и балансировочный груз (78). Роторная машина содержит вращающийся компонент (62) с канавкой (76), имеющей основание (84) и пару наклонных сторон (86), сходящихся друг к другу в первом направлении (66) от основания (84) с образованием проема (92).

Изобретение относится к способам инерционных испытаний цепных передач и позволяет определить момент инерции цепной передачи. Сущность изобретения заключается в том, что к входному валу цепной передачи присоединяется выходной вал электрического двигателя и крепится тело с эталонным моментом инерции, а момент инерции цепной передачи определяется как отношение суммы произведения разности углового ускорения системы вращающихся масс «электрический двигатель, цепная передача, тело с эталонным моментом инерции» и углового ускорения системы вращающихся масс «электрический двигатель, цепная передача» на момент инерции электрического двигателя и произведения углового ускорения системы вращающихся масс «электрический двигатель, цепная передача, тело с эталонным моментом инерции» на момент инерции тела с эталонным моментом инерции к разности углового ускорения системы вращающихся масс «электрический двигатель, цепная передача» и углового ускорения системы вращающихся масс «электрический двигатель, цепная передача, тело с эталонным моментом инерции».

Изобретение относится к машиностроению и может быть использовано при сборке и балансировке сборных роторов компрессоров газоперекачивающих агрегатов. В способе балансировки сборного ротора балансируют вал с использованием плоскостей коррекции дисбалансов на концах вала и его муфты и балансируют собранный ротор, при этом измеряют биения соединительных фланцев муфт относительно их балансировочных поверхностей, определяют и маркируют места максимального радиального биения фланцев.
Изобретение относится к способам диагностики ремонтных конструкций, применяемых для ремонта трубопроводов по композитно-муфтовой технологии. Сущность: трубу с дефектом герметизируют путем приварки к ее торцам двух заглушек с эллиптическими днищами.
Изобретение относится к измерительной технике, в частности к способу балансировки вращающихся частей машин, и может быть использовано для балансировки вентиляторов.

Изобретение относится к машиностроению и может быть использовано для балансировки валов машин. Груз для балансировки редуктора содержит корректирующую массу и выполнен в виде концентричного кольца с выступом или лыской на внутренней поверхности с радиальными сквозными и несквозными прорезями.

Изобретение относится к измерительной технике и может быть использовано для определения координат центра масс и балансировки изделий сложной формы. Способ включает центрирование колеса с установлением точек отсчета координат местонахождения силоизмерительных датчиков, размещенных на поверхности платформ, используемых для взвешивания рабочего колеса.

Изобретение относится к устройствам и способам автоматического подавления вибрации и может быть использовано в помольно-смесительных агрегатах с автоматической балансировкой. Устройство автоматического подавления вибрации помольно-смесительного агрегата, включающего станину 1, вертикальные колонки 2 с ползунами 3, прямоугольную раму 4 с камерами 5, соединенную с ползунами 3 и эксцентриковым валом 9, снабженным с двух сторон противовесами 10, содержит дополнительный вал 11, связанный с эксцентриковым валом 9. Дополнительный вал 11 снабжен водилом 13 с двумя направляющими 14, несущими дополнительный противовес 15, взаимодействующий с сателлитом дифференциального механизма, левая и правая шестерни которого соединены с полуосями 17, связанными с выходами двух тормозных электромагнитных муфт 19, 20. Электрические входы муфт 19, 20 соединены с выходами соответственно первого 22 и второго 23 усилителей-преобразователей, входящих в прямую цепь основного канала управления положением дополнительного противовеса 15 и соединенных своими входами через модуль ввода-вывода с первым и вторым выходом программируемого контроллера 24. Устройство содержит два дополнительных канала управления. Первый дополнительный канал с управлением по разомкнутому принципу частотой вращения эксцентрикового вала 9 соединен входом с третьим выходом контроллера 24 и состоит из последовательно соединенных третьего усилителя-преобразователя 27, третьего исполнительного механизма 28, связанного с эксцентриковым валом 9. Второй дополнительный канал управления загрузкой помольно-смесительного агрегата входом соединен с четвертым выходом контроллера 24 и содержит в прямой цепи последовательно соединенные четвертый усилитель-преобразователь 29, четвертый исполнительный механизм 30 и второй регулирующий орган 31. При этом цепь обратной связи содержит последовательно соединенные датчик массы материала 32 на выходе помольно-смесительного агрегата и второй нормирующий преобразователь 33, выход которого связан со вторым входом контроллера 24, соединенного своим первым входом с выходом цепи обратной связи основного канала управления положением дополнительного противовеса 15, включающей последовательно соединенные датчик положения дополнительного противовеса и первый нормирующий преобразователь 26. Согласно способу процесс подавления вибрации осуществляют по разомкнутому принципу посредством контроллера 24, база данных в памяти которого задает поверхность статических характеристик агрегата в виде зависимости уровня вибрации от коэффициента загрузки в камерах и положения дополнительного противовеса при различных фиксированных значениях частоты вращения эксцентрикового вала 9. Определяют текущее положение рабочей точки на поверхности статических характеристик, сравнивают с положением точки, соответствующим наименьшему значению вибрации, и формируют управляющее воздействие положительного или отрицательного знака, подаваемое после усиления на первую или вторую тормозные электромагнитные муфты, действие которых приводит к перемещению дополнительного противовеса, способствующему подавлению вибрации. Устройство и способ обеспечивают повышение качества измельченного материала и увеличение ресурса работы узлов и деталей помольно-смесительного агрегата. 2 н.п. ф-лы, 4 ил.

Изобретения относятся к измерительному оборудованию, а именно к средствам и методам балансировки, и могут быть использованы для определения дисбаланса роторов турбин, компрессоров. Согласно способу ротор устанавливают на опорах с вибровоспринимающими резонаторами, разгоняют его до выбранной частоты вращения, регистрируют колебания ротора, определяют дисбаланс и устраняют его. При этом до начала вращения в автоматический оперативный блок вводят исходные параметры балансировки, например, массу ротора и требуемую точность балансировки. Затем на основе исходных параметров определяют режим балансировки: дорезонансный, резонансный или зарезонансный. После этого по команде оперативного блока автоматически устанавливают соответствующие выбранному режиму собственную частоту вибровоспринимающих резонаторов и частоту вращения ротора. Устройство включает вращающее устройство, датчики колебаний и, по крайней мере, две опоры. Опоры соединены с вибровоспринимающими резонаторами. Каждый вибровоспринимающий резонатор выполнен с возможностью изменения собственной частоты и реализации дорезонансного, резонансного или зарезонансного режимов балансировки. Устройства изменения собственной частоты вибровоспринимающих резонаторов соединены с автоматическим оперативным блоком. При этом оперативный блок оборудован устройством ввода исходных параметров балансировки. Технический результат заключается в расширении возможностей и повышении эффективности процесса балансировки. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к балансировочной технике, в частности к балансировочному устройству, и может быть использовано для устранения дисбаланса испытываемого образца. Устройство имеет измерительную систему для определения вращательного дисбаланса испытуемого образца, содержащую шпиндельный узел со шпинделем, служащим для удержания испытуемого образца и вращения его с испытательной скоростью вращения, шпиндельную бабку, посредством которой шпиндельный узел подвижно прикреплен к станине станка, так что шпиндельный узел может колебаться в заданном направлении измерения в результате усилий дисбаланса, возникающих во время измерения, и по меньшей мере один датчик, который при вращении шпинделя обнаруживает по меньшей мере одну характеристику переменной дисбаланса, возникающую в направлении измерения. Также система содержит систему съема материала для балансировки испытуемого образца путем съема материала в заданном месте. Измерительная система и система съема материала выполнены так, что съем материала может быть произведен, когда испытуемый образец удерживается в шпинделе. Кроме того, имеется зажим шпинделя, посредством которого шпиндельный узел без шпиндельной бабки или по меньшей мере без датчика может быть зафиксирован усилием, созданным во время фиксации, с тем, чтобы он не перемещался под воздействием усилий, произведенных системой съема материала. 8 з.п. ф-лы, 11 ил.

Изобретение относится к области строительства атомных электрических станций и, в частности, к этапу преднапряжения герметичных защитных оболочек реакторных отделений с реактором ВВР-1000 (1250, 1500). Техническим результатом изобретения является повышение точности измерений деформации. Способ определения деформационных характеристик защитной герметичной оболочки заключается в маркировании по заданным сечениям защитной герметичной оболочки контролируемых точек и выполнении поцикловых определений их положения. Контролируемые точки привязывают к геодезическим планово-высотным пунктам, выполняют анализ измерительной информации. Планово-высотное геодезическое обоснование формируют многоярусным как вне сооружения, так и внутри него в единой системе координат, причем данная система координат совмещается с системой координат защитной герметичной оболочки, исследуемые точки размещают в моментной, переходной, безмоментной зонах строительных элементов защитной герметичной оболочки на ее внешней и внутренней поверхностях, контроль геометрических параметров выполняют поэтапно. В процессе контроля внутренние и внешние геометрические параметры защитной герметичной оболочки определяют одновременно на всех этапах наблюдений. Положения исследуемых точек, размещенных в безмоментной зоне, определяют с точностью, обеспечивающей надежное определение общей ожидаемой максимальной величины деформации стержневой арматуры. 2 ил.

Изобретение относится к испытательной технике, в частности к испытаниям плоских и пространственных железобетонных рамно-стержневых конструктивных систем. Способ реализуется следующим образом. На испытательном стенде собирают конструктивную схему в виде рамно-стрежневой системы, закрепляют опорные стойки с силовым полом, при этом одну из стоек изготавливают телескопической из двух металлических труб, соединенных бетонной шпонкой с заранее прокалиброванным усилием среза. Затем устанавливают источник светового луча вместе с экраном-приемником в одной плоскости и систему зеркал на элементы конструкции в соответствующих сечениях, где необходимо произвести измерения приращения перемещений. Далее производят загружение рамно-стержневой системы заданной проектной статической нагрузкой через нагрузочные устройства, создавая тем самым внезапное хрупкое разрушение бетонной шпонки телескопической стойки и, как следствие, выключение линейной связи. Затем по отсчетам отраженного на экране со шкалой луча производят измерения приращения перемещений от динамического догружения системы в неразрушенных после запроектного воздействия элементах. Технический результат заключается в повышении точности определения приращения перемещений в запредельных состояниях, вызванных внезапным запроектным воздействием. 2 ил.

Изобретение относится к области машиностроения и предназначено для использования в технологических процессах балансировки роторов. Способ заключается в том, что измеряют дисбалансы, определяют параметры корректирующих воздействий для каждой плоскости коррекции и производят корректировку масс, параметры корректирующих воздействий, отвечающих условию равенства нулю остаточных дисбалансов в номинальных плоскостях коррекции. Затем определяют с учетом смещений центров корректирующих масс от номинальных радиусов и плоскостей коррекции ротора через процедуру моделирования ожидаемых последствий корректирующих воздействий, после чего производят корректировку массы ротора. При этом создают виртуально-объемное изображение балансировки ротора, моделируют на виртуальном роторе статические и моментные дисбалансы до совмещения главной центральной оси инерции с осью вращения. Задают параметры дисбалансов, осуществляют корректировку масс на виртуальном эталонном образце ротора, и наблюдают за виртуальной корректировкой ротора в плоскостях коррекции, и создают базу данных виртуальных образцов роторов. Затем устанавливают балансируемый ротор на станок и измеряют динамическое давление в опорах его неуравновешенности, совмещают и сравнивают дисбалансы, а по величине отклонения судят о необходимости балансировки ротора, удалив корректирующую массу, и по минимальному остаточному дисбалансу ротора судят о качестве балансировки. Технический результат заключается в повышении точности балансировки ротора. 2 ил.

Изобретение относится к машиностроению и может быть использовано при монтаже сборных роторов газоперекачивающих агрегатов. При сборке ротора балансируют вал и все его элементы, балансируют собранный ротор и крепят его к валам двигателя и компрессора, производят коррекцию монтажных дисбалансов установкой грузиков, их массу определяют исходя из масс частей сборного ротора, дисбалансы которых корректируют в данных плоскостях, величин биений балансировочных поверхностей ротора и удаления места установки грузика от оси вращения. На каждой контрольной поверхности ротора выбирают и маркируют по четыре точки, размещая их попарно диаметрально противоположно во взаимно перпендикулярных плоскостях. Производят измерения радиальных биений контрольных поверхностей в промаркированных местах относительно нулевой точки после балансировки ротора и после крепления сбалансированного ротора к валам двигателя и компрессора. Результаты в обоих случаях фиксируют, грузики устанавливают на подготовленные места в плоскостях измерения, а массы и места грузиков определяются из предложенных зависимостей. Изобретение направлено на обеспечение повышения точности балансировки сборного ротора за счет минимизации локальных монтажных дисбалансов, обусловленных эксцентриситетом установки. 5 ил.

Группа изобретений относится к машиностроению. Демпфирующее устройство (1) содержит: поддерживающий корпус (6), элемент (11) с кольцеобразным отверстием (12). Упругое средство расположено между поддерживающим корпусом и элементом. Элемент выполнен с возможностью перемещения относительно поддерживающего корпуса и радиально относительно оси (А) между первым и вторым положением при изгибе вала относительно оси. Элемент устанавливается в первое положение при пересечении отверстия свободно валом. Элемент устанавливается во второе положение при взаимодействии с валом. Скорость вращения вала во втором диапазоне содержит по меньшей мере одну критическую скорость вала. Стержень выполнен с возможностью перемещения совместно с элементом радиально относительно оси. Плита выполнена за одно целое со стержнем и поперек него. Упругое средство расположено между стержнем и поддерживающим корпусом. Упругое средство содержит первую пружину и вторую пружину. Первая пружина расположена между первым участком поддерживающего корпуса и выступом элемента. Вторая пружина расположена между плитой и вторым участком поддерживающего корпуса. Привод содержит вал, работающий во втором диапазоне скоростей вращения. Воздушное судно содержит привод. Достигается улучшение гашения изгибных колебаний вала. 3 н. и 7 з.п. ф-лы, 5 ил.

Заявленные изобретения относятся к измерительной технике и могут быть использованы в балансировочной технике, в частности для балансировки ротора. Инструмент пошагового перемещения проверки балансировки содержит поверхность держателя ротора, расположенную на проверяемом роторе, содержащую кинематические соединительные элементы держателя ротора, и приемное устройство держателя ротора, при этом приемное устройство держателя ротора содержит соответствующие кинематические соединительные элементы приемного устройства держателя ротора. Поверхность держателя ротора может быть механически обработанной на поверхности ротора или предоставленной на отдельном держателе ротора, временно прикрепленном к ротору. Поверхность держателя ротора и приемное устройство держателя ротора сконфигурированы для обеспечения соединения при пошаговом перемещении, которое позволяет легко индексировать ротор в любом из нескольких положений индексации для проверки на дисбаланс в устройстве проверки балансировки. Инструмент позволяет производить несколько балансирующих циклов без особых усилий, необходимых для повторного пошагового перемещения ротора. Способ включает использование указанного инструмента пошагового перемещения проверки балансировки. 2 н. и 24 з.п. ф-лы, 10 ил.

Изобретение относится к области диагностики технического состояния машин и механизмов и может быть использовано, например, для оценки технического состояния металлорежущих станков и их элементов конструкций. Способ заключается в определении перечня диагностируемых параметров и возможных дефектов машин, определении величин этих диагностируемых параметров и дефектов, установке на частях машин хронометрических датчиков фаз работы машин для проведения измерений, и регистрации показаний в едином метрологическом поле, анализе показаний датчиков и уточнении с использованием математических моделей величин диагностируемых параметров. При этом также производится контроль состояния деталей и частей машин, учитывается исправность машин, внешние условия эксплуатации в виде температуры и влажности. Технический результат заключается в повышении точности измерений и диагностирования. 1 табл., 18 ил.
Наверх