Способ получения терпеновых α-хлоркетонов или хлоргидроксикетонов

Настоящее изобретение относится к способу получения новых терпеновых α-хлоркетонов или хлоргидроксикетонов, которые широко используются в качестве интермедиатов для получения гетероциклических соединений, эпоксидов конденсаций Дарзана, α-алкил(арил)-тиокарбонильных соединений, β-кетоэфиров. Способ включает пропускание через раствор исходного соединения в растворителе, без или в присутствии катализаторов, тока газообразного диоксида хлора в течение определенного времени, удаление растворителя, экстракцию диэтиловым или метил-трет-бутиловым эфиром, промывание и сушку реакционной смеси над безводным MgSO4, выделение конечного продукта хроматографией на SiO2 или кристаллизацией. При этом в качестве исходного соединения используют изопинокамфеол, либо неоизовербанол, либо 3β,4β-карандиол. 3 табл., 3 пр.

 

Настоящее изобретение относится к области органической химии, а именно к способу получения терпеновых α-хлоркетонов или хлоргидроксикетонов, которые широко используются в качестве интермедиатов для получения гетероциклических соединений, эпоксидов конденсаций Дарзана, α-алкил(арил)-тиокарбонильных соединений, β-кетоэфиров и т.д.

Существует значительное количество методов и реагентов для синтеза α-хлоркетонов. Большинство этих методов основано на α-хлорировании кетонов Сl2 [Aston, J.С, Newkirk, J.D., Jenkins, D.M. and Dorsky, J., "Organic Syntheses," Collect. Vol. 111, Wiley, New York, 1955, p. 538], N-хлорсукцинимидом [Buu-Hoi, N.P. and Demerseman, P. // J. Org. Chem., 1953, 18, 649], сульфурилхлоридом [Wyman, D. P. and Kaufman, P.R., // J. Org. Chem., 1964, 29, 1956], оксихлоридом селена [Schaefer, J.P. and Sonnenberg, F . , // J. Org. Chem., 1963, 28, 1128], хлоридом меди (II) [Kosower, E. M., Cole, W. J., Wu, G . S., Cardy, D.E. and Meisters, G., J. Org. Chem., 1963, 28, 630], трихлоризоциануровой кислотой [Hiegel, G. A.; Peyton, К. B. Chlorination of Ketones with Trichloroisocyanuric Acid. Synthetic Communications 1985, 15, 385-392], системой NaClO2- Mn(acac)3 в присутствии влажного Al2O3 [Yakabe, S.; Hirano, M.; Morimoto, T. α-Chlorination of Ketones with Sodium Chlorite, Mn(acac)3 and Alumina in Dichloromethane // Synthetic Communications 1998, 28, 131-138], полимерным аналогом N,N-дихлор-п-толуолсульфонамида в присутствии кислотных катализаторов [Kawasoe, S.; Kobayashi, K.; Ikeda, K.; Ito, Т.; Seok Kwon, Т.; Kondo, S.; Kunisada, H.; Yuki, Y. Preparation of Polymeric Analogs of N,N-Dichloro-p-Toluenesulfonamide and Their Use for Oxidation of Alcohols, Oxidative Lactonization of Diols, and Chlorination of Carbonyl Compounds. // Journal of Macromolecular Science, Part A, 1997, 34, 1429-1438].

И только несколько примеров прямого превращения вторичных спиртов в α-хлоркетоны приведены в литературе. Так, вторичный фенилэтиловый спирт при обработке Сl2 в СН2Сl2 при -50°C образует 2-хлорацетофенон с выходом 16% [Yamauchi, Т., Hattori, K., Mizutaki, S., Tamaki, K., & Uemura, S. (1986). Selenium and tellurium tetrachlorides as reagents for the conversion of alcohols to alkyl chlorides and tellurium tetrachloride as a Lewis acid catalyst for aromatic alkylation. // Bulletin of the Chemical Society of Japan, 59(11), 3617-3620. doi:10.1246/bcsj.59.3617]. С выходом около 50% получены 2-хлор-3-кетостероиды окислительным хлорированием соответствующих спиртов трет-бутилгипохлоритом в уксусной кислоте при Т=70°C [Beereboom, J. J., Djerassi, C, Ginsburg, D., & Fieser, L.F. (1953). Synthesis and Reactions of Chlorinated 3-Ketosteroids // Journal of the American Chemical Society, 75(14), 3500-3505. doi:10.1021/ja01110а057]. При использовании N-хлорсукцинимида или t-BuOCl в трет-бутаноле с небольшим содержанием Н2O выход α-хлор-3-кетостероидов возрастает до 57-84% [Hanze, A. R., Fonken, G.S., Mcintosh, А.V., Searcy, А.М., & Levin, R.Н. (1954). Chemical Studies with 11-Oxygenated Steroids. V. A One-Step Oxidation-Halogenation of 3-Hydroxysteroids // Journal of the American Chemical Society, 76(12), 3179-3181. doi:10.1021/ja01641a020].

Авторами работы [Kim, H.J., Kim, H.R., & Ryu, E.K. (1990). One-Pot Synthesis of α-Chloroketones from Secondary Benzylic Alcohols Using m-Chloroperbenzoic Acid/HCI/DMF System // Synthetic Communications, 20(11), 1625-1629. doi:10.1080/00397919008053082] предложен одностадийный метод синтеза α-хлоркетонов из вторичных бензильных спиртов с использованием системы m-СРВА-HCl-DMF при комнатной температуре в течение 6 часов. Селективность образования целевых продуктов составляет 80-98%, препаративный выход 80-84%. Для окислительного хлорирования этих же субстратов использован N,N-дихлор-п-толуолсульфонамид в ацетонитриле, выход продуктов составляет 92-94% [Kim, Y.Н., Lee, I.S., & Lim, S.С. (1990). One-pot synthesis of α-chloro-ketones from secondary alcohols using N,N-dichloro-p-toluenesulfonamide // Chemistry Letters. Japan Science and Technology Agency (JST), V19, 7, 1125-1128, (1990)]. Для прямого превращения 1-тетралола в α-хлор-1-тетралон использован N-хлорсукцинимид в СН2Сl2 в присутствии сложного катализатора [Tripathi, С.В., & Mukherjee, S. (2012). Lewis Base Catalysis by Thiourea: N-Bromosuccinimide-Mediated Oxidation of Alcohols // The Journal of Organic Chemistry, 77(3), 1592-1598. doi:10.1021/jo202269p]. Известен способ прямого получения α-хлоркетонов с выходом 38-79% окислением ди- и тризамещенных олефинов хромилхлоридом (СrO2Сl2) в ацетоне при температуре минус 70°C [Sharpless, К.В.; Teranishi, A.Y. Chromyl chloride in acetone. α-Chloro ketones and ketones directly from olefins // J. Org. Chem. 1973, 38, 185-186].

α-хлоркетоны с выходом около 50% образуются в результате окисления вторичных спиртов по Сверну при обязательном использовании избытка реагента - оксалилхлорид-ДМСО [Smith, А. В., III; Leenay, Т.L.; Liu, H.-J.; Lloyd A.K.Nelson; Ball, R.G. A Cavaet on the Swern Oxidation // Tetrahedron Letters 1988, 29, 49-52].

Описан способ получения α-хлоризопулегона в виде смеси стереоизомеров в соотношении 3:2 с выходом 75% при обработке пулегона 1 экв. НОСl в СН2Сl2 при температуре -60°C [Hegde, S. G.; Beckwith, D.; Doti, R.; Wolinsky, J. Synthesis with hypochlorous acid. Conversion to pulegone and isopulegol to menthofuran. Preparation of 3,6-dimethyl-2,6-cycloheptadien-1-one from phorone // J. Org. Chem. 1985, 50, 894-896].

Известен способ получения терпенового 2-хлорпинанона-3 в две стадии: а) взаимодействие пинокарвеола с НСl в абсолютном эфире в течение 24 час приводит к образованию гидрохлорида пинокарвеола (выход продукта не указан); б) окисление последнего CrO3 с выходом 55% дает целевой α-хлоркетон, Тпл. 33-35 [α]D+12 (чистое вещество) [Treibs, W.; Mühlstädt, М.; Megges, R.; Klotz-Herdmann, I. Über Pinocarveol. // Justus Liebigs Ann. Chem. 1960, 634, 118-124].

Недостатком этого метода является проведение реакции в две стадии, применение абсолютного эфира, длительность обеих стадий (24 и 12 часов соответственно), средний выход целевого продукта (~55%).

Прототипом предлагаемого изобретения взят способ окисления диоксидом хлора в пиридине вицинальных терпеновых диолов карановой и пинановой структуры [Л.Л. Фролова, А.В. Попов, Л.В. Безуглая, И.Н. Алексеев, П.А. Слепухин, А.В. Кучин. Окисление терпеновых диолов диоксидом хлора: синтез кетолов и α-хлоргидроксикетонов карановой и пинановой структуры, ЖОХ, 2013, т.83(145), вып.8, 1311-1317]. Способ заключается в окислении 3α,4α-карандиола диоксидом хлора в течение 10 часов в присутствии 5% мол ZrOCl2, при этом образуется, кроме основного гидроксикетона, смесь (5:4) диастереомерных 5-хлор, 3α-гидроксикаранонов-4, препаративный выход которой составил 3%. Недостатком данного способа является 1) образование смеси хлоргидроксикетонов, которые не разделяются хроматографией или кристаллизацией; 2) низкий выход этой смеси.

Задачей настоящего изобретения является разработка одностадийного способа получения терпеновых α-хлоркетонов или хлоргидроксикетонов, позволяющего получать новые соединения, а именно 2α-хлорпинанон-3,3α-хлор-10β-пинанон-4,5β-хлор-3β-гидроксикаранон-4 окислением диоксидом хлора. В этом и состоит технический результат.

Технический результат достигается тем, что способ получения терпеновых α-хлоркетонов или хлоргидроксикетонов включает пропускание через раствор исходного соединения в растворителе, без или в присутствии катализаторов, тока газообразного диоксида хлора в течение определенного времени, удаление растворителя, экстракцию диэтиловым или метил-трет-бутиловым эфиром, промывание и сушку реакционной смеси над безводным MgSO4, выделение конечного продукта хроматографией на SiO2 или кристаллизацией, согласно изобретению, в качестве исходного соединения взяты изопинокамфеол, либо неоизовербанол, либо 3β,4β-карандиол.

Способ осуществляется следующим образом.

Исходными соединениями являются изопинокамфеол (1), неоизовербанол (2), 3β,4β-карандиол (3). В качестве окислительно-хлорирующего реагента применяется диоксид хлора (промышленный продукт, используемый для отбелки целлюлозы и очистки питьевой и сточных вод), в качестве растворителя - диметилформамид, в качестве катализаторов - оксихлорид циркония или ацетилацетонат ванадила или хлорид молибдена (V).

Через раствор исходного соединения 1-3 в диметилформамиде без или в присутствии катализаторов хлорида молибдена (МоСl5) или оксихлорида циркония ZrOCl2 или ацетилацетоната ванадила (VO(acac)2) в течение определенного времени пропускают ток газообразного диоксида хлора. Реакцию контролируют по ТСХ и ГЖХ, после удаления растворителя реакционную смесь разбавляют водой, продукты реакции экстрагируют диэтиловым или метил-трет-бутиловым эфиром, эфирные вытяжки промывают насыщенным водным раствором NaCl и сушат над безводным MgSO4. После удаления растворителя продукты анализируют методом ГЖХ, выделяют колоночной хроматографией на силикагеле или кристаллизацией.

Пример 1. Через раствор 0,5 г изопинокамфеола [[α]D-35.8 (с 0,7 EtOH), т.пл. 51-52°C] и 0,01 г ZrOCl2 в 10 мл ДМФА при перемешивании при комнатной температуре пропускали ток газообразного СlO2. Реакцию контролировали по ТСХ и ГЖХ. Через 3 часа из реакционной смеси отогнали ДМФА на роторном испарителе, остаток разбавили 15 мл Н2O, продукты экстрагировали метилтретбутиловым эфиром (3*15), эфирные вытяжки промывали насыщенным раствором NaCl, сушили над MgSO4. После удаления растворителя продукт выделяли колоночной хроматографией на SiO2 (элюент - петролейный эфир:диэтиловый эфир). Выход 0,355 г (71.0%). Результаты экспериментов приведены в таблице 1.

2α-хлорпинанон-3 (4). Rf 0.72 (гексан:Еt2O 2:1), [α]D+96.4 (с 1.1 ЕtOН). ИК спектр (ν, см-1) : 2978, 2935, 2875, 1728 (С=O), 1471, 1448, 1409, 1373, 1321, 1267, 1240, 1209, 1145, 1099, 1047, 945, 914, 866, 831, 729 (С-С1), 628, 551. Спектр ЯМР 13С (75 МГц, CDCl3, δ, м.д.) : 206.02 (С3), 73.98 (С2), 52.84 (С1), 43.06 (С4), 40.26 (С6), 38.27 (С5), 31.55 (С7), 27.47 (С9), 27.50 (С10), 22.79 (С8). ЯМР 1H (300 МГц, CDCl3, δ/м.д., J/Гц): 0.93 с (3Н, СН3-8), 1.41 с (3Н, СН3-9), 1.79 с (3Н, СН3-10), 1.91 д (1Н, Н-7` J=11), 2.17 м (1Н, Н-5, J=2.4, 6.1), 2.41 дд (1H, Н-1, J=6.1, 6.2), 2.59 м (1H, Н-7``, J=11), 2.70 ддд (1H, Н-4` J=3.0, 6.2, 19), 2.77 дд (1H, Н-4``, J=2.4, 19).

Пример 2. Через раствор 0,26 г неоизовербанола [[α]D-1.5 (с 1,0 EtOH), т.пл. 65-66°C] в 5 мл ДМФА при перемешивании при комнатной температуре пропускали ток газообразного СlO2. Реакцию контролировали по ТСХ и ГЖХ. Через 2 часа из реакционной смеси отогнали ДМФА на роторном испарителе, остаток разбавили 10 мл Н2O, продукты экстрагировали диэтиловым эфиром (3*15), эфирные вытяжки промывали насыщенным раствором NaCl, сушили над MgSO4. После удаления растворителя продукт выделяли колоночной хроматографией на SiO2 (элюент - петролейный эфир:диэтиловый эфир). Выход 0,164 г (63.0%). Результаты экспериментов приведены в таблице 2.

3α-хлор, 10β-пинанон-4 (5). Rf 0.58 (гексан:Еt2O 1:1), [α]D+1.8 (с 0.4 ЕtOН). ИК спектр (ν, см-1): 2958, 2939, 2879, 1728 (С=O), 1467, 1382, 1294, 1249, 1188, 983, 881, 773 (С-С1), 650, 626, 586, 503. Спектр ЯМР 13С (75 МГц, DMSO-d6, δ, м.д.): 206.08 (С4), 62.25 (С3), 58.49 (С5), 47.80 (С1), 45.38 (С2), 39.62 (С6), 29.37 (С7), 26.96 (С9), 24.93 (С8), 19.11 (С10). Спектр ЯМР 1Н (300 МГц, DMSO-d6, δ/м.д., J/Гц): 0.98 с (3Н, СН3-8), 1.24 д (3Н, СН3-10, J=7.4), 1.32 с (3Н, СН3-9), 1.39 д (1H, Н-7`, J=11), 2.16 ддд (1Н, Н-1, J=2.3, 5.7, 5.8), 2.42 ддк (1H, Н-2, J=2.3, 5.7, 7.4), 2.68 дд (1H, Н-5, J=5.5, 5.8), 2.77 ддд (1H, Н-7``, J=4.8, 6.0, 11), 4.59 д (1H, Н-3, J=5.7).

Пример 3. Через раствор 0,21 г 3β,4β-карандиола [[α]D+42.7 (с 10 СНСl3), т.пл. 43-44°C] в 5 мл ДМФА при перемешивании при комнатной температуре пропускали ток газообразного СlO2. Реакцию контролировали по ТСХ и ГЖХ. Через 6 часов из реакционной смеси отогнали ДМФА на роторном испарителе, остаток разбавили 10 мл Н2O, продукты экстрагировали диэтиловым эфиром (3*15 мл), эфирный экстракт промывали насыщенным раствором NaCl, сушили над MgSO4. После удаления растворителя продукт выделяли колоночной хроматографией на SiO2 (элюент - петролейный эфир:диэтиловый эфир). Выход 0,161 г (77%). Результаты экспериментов приведены в таблице 3.

5β-хлор-3β-гидроксикаранон-4 (6). Rf 0.38 (Et2O : гексан 1:1), [α]D+179.1 (с. 0.3 EtOH), т.пл. 85-87°C. ИК спектр (ν, см-1): 3495(ОН), 3012, 2983, 2954, 2933, 2912, 1724(С=O), 1450, 1382, 1361, 1282, 1226, 1186, 1145, 1089, 1033, 970, 939, 812, 790, 759(С-С1), 734. Спектр ЯМР 1Н (300 МГц, DMSO-d6, δ/м.д., J/Гц): 0.84 (3Н, с, СН3-8), 1.04 (3Н, с, СН3-9), 1.16 ддд (Н, Н-1, J 3.9, 9.0, 13), 1.39 с (3Н, с, СН3-10), 1.72 дд (1Н, Н-2, J 3.8, 14.6), 1.76 дд (1H, Н-6, J 8.4, J 9.0), 2.23 дд (1H, Н-2, J 9.8, 14.6), 5.73 д (1Н, Н-5, J 8.4). Спектр ЯМР 13С (75 МГц, DMSO-d6, δ, м.д.): 207.8 (С-4), 76.7 (С-3), 64.8 (С-5), 37.4 (С-2), 33.0 (С-6), 28.2 (С-9), 25.7 (С-10), 22.3 (С-7), 22.2 (С-1), 16.0 (С-8).

Способ получения терпеновых α-хлоркетонов или хлоргидроксикетонов, включающий пропускание через раствор исходного соединения в растворителе, без или в присутствии катализаторов, тока газообразного диоксида хлора в течение определенного времени, удаление растворителя, экстракцию диэтиловым или метил-трет-бутиловым эфиром, промывание и сушку реакционной смеси над безводным MgSO4, выделение конечного продукта хроматографией на SiO2 или кристаллизацией, отличающийся тем, что в качестве исходного соединения взяты изопинокамфеол, либо неоизовербанол, либо 3β,4β-карандиол.



 

Похожие патенты:

Изобретение относится к способу получения 1-гидрокси-4-адамантанона - действующего вещества иммуномодулирующего препарата «Кемантан». Способ заключается в окислении адамантана 98%-ной серной кислотой при температуре 70-82°С в течение 9-15 ч и дальнейшим взаимодействии с дымящей азотной кислотой, с последующим нагреванием реакционной смеси в течение 6 ч при температуре 25-45°С.

Настоящее изобретение относится к области органической химии, конкретно к способу получения 3α-гидрокси-10β-пинанона-4. Способ заключается в окислении 3α,4β-дигидрокси-10β-пинана в диметилформамиде без или в присутствии катализаторов MoCl5 или Мо(СО)6 в течение 1-2 часов при пропускании тока газообразного диоксида хлора.

Изобретение относится к способу получения 1-гидроксиадамантан-4-она из адамантанона-2. При этом адамантанон-2 бромируют с помощью CBrCl3 под действием катализатора Мо(CO)6, активированного пиридином при мольном соотношении [Mo]:[Py]:[AdO]:[CBrCl3]=1-10:200-1000:1000:1000-2500, при температуре 175°C в течение 6-20 ч с последующим гидролизом образующегося 1-бромадамантан-4-она.

Изобретение относится к способу получения 1-гидроксиадамантан-4-она, который является иммуностимулирующим средством, эффективным при лечении заболеваний сосудистой системы конечностей аутоиммунного генеза, хронического стоматита, герпеса и др.

Изобретение относится к способу получения 1-гидроксиадамантан-4-она (кемантана), который может применяться в качестве иммуностимулирующего средства, эффективного при лечении заболеваний сосудистой системы, конечностей аутоиммунного генеза, хронического бронхита, туберкулеза, инфекционно-аллергической бронхиальной астмы, хронического афтозного стоматита, герпеса, а также в качестве антикаталептического средства и полупродукта для синтеза 1,4-бифункциональных замещенных адамантана.
Изобретение относится к получению циклоалканонов C8-C12 перспективных полупродуктов в синтезе лактамов, алифатических дикарбоновых кислот, даминов - мономеров для производства полиамидных волокон, пластмасс и пластификаторов новых типов и других ценных материалов.

Изобретение относится к новым замещенным производным бициклогептандиона и к гербицидам, содержащим указанные производные в качестве активного компонента. .

Изобретение относится к химии комплексных соединений, в частности к способу очистки L=(D)-3-гептафторбутирилкамфоры для получения комплексов металлов, которые используются в качестве шифт-реагентов в ЯМР-спектроскопии.

Настоящее изобретение относится к области органической химии, конкретно к способу получения 3α-гидрокси-10β-пинанона-4. Способ заключается в окислении 3α,4β-дигидрокси-10β-пинана в диметилформамиде без или в присутствии катализаторов MoCl5 или Мо(СО)6 в течение 1-2 часов при пропускании тока газообразного диоксида хлора.

Изобретение относится к усовершенствованному способу получения ацетофенона, который используют в парфюмерии. .
Изобретение относится к вариантам способа получения α-хлорацетофенона, который является сырьем для получения ряда медицинских и сельскохозяйственных препаратов. Согласно первому варианту способ включает окисление стирола или его органического раствора при комнатной температуре путем добавления по каплям окислителя при постоянном перемешивании реакционной смеси, последующее разделение и удаление растворителя, выделение целевого продукта. При этом согласно первому варианту способа в качестве растворителя используют дихлорметан или диметилформамид, а в качестве окислителя - водный раствор диоксида хлора, окисление осуществляют при мольном соотношении реагентов стирол:диоксид хлора 1:2 соответственно, экстракцию реакционной смеси осуществляют хлороформом, сушку - Na2SO4, удаление растворителя проводят при пониженном давлении после хроматографического разделения. Согласно второму варианту способ включает окисление стирола или его органического раствора при комнатной температуре при постоянном перемешивании, разделение, выделение целевого продукта. При этом в качестве окислителя используют водный раствор диоксида хлора, окисление осуществляют путем барботирования окислителя с воздухом в стирол или в раствор стирола при мольном соотношении реагентов стирол:диоксид хлора 1:2 соответственно, выделение целевого продукта осуществляют путем хроматографического разделения. Предлагаемые варианты способа позволяют получить целевой продукт с использованием простой технологии. 2 н.п. ф-лы, 6 пр.

Настоящее изобретение относится к способу получения новых терпеновых α-хлоркетонов или хлоргидроксикетонов, которые широко используются в качестве интермедиатов для получения гетероциклических соединений, эпоксидов конденсаций Дарзана, α-алкил-тиокарбонильных соединений, β-кетоэфиров. Способ включает пропускание через раствор исходного соединения в растворителе, без или в присутствии катализаторов, тока газообразного диоксида хлора в течение определенного времени, удаление растворителя, экстракцию диэтиловым или метил-трет-бутиловым эфиром, промывание и сушку реакционной смеси над безводным MgSO4, выделение конечного продукта хроматографией на SiO2 или кристаллизацией. При этом в качестве исходного соединения используют изопинокамфеол, либо неоизовербанол, либо 3β,4β-карандиол. 3 табл., 3 пр.

Наверх