Способ идентификации присоединенного момента инерции тела и устройство для его осуществления

Изобретение относится к области гидродинамики, измерительной технике, лабораторным установкам, судостроению. Способ идентификации присоединенного момента инерции тела состоит в том, что телу активным моментом сил сообщают реверсивно-симметричное прецессионное вращение вокруг вертикальной оси, замеряют разности работ активных моментов сил через разности потребляемой электроэнергии, по которым аналитически с применением уравнения изменения энергии, использования рубежных положений и модулей вектора угловой скорости определяют моменты инерции тела, при этом тело в виде корпуса судна погружают в опытовый бассейн по ватерлинию или с заданной осадкой и сообщают одно или несколько реверсивно-симметричных вращений моментом упругих сил вокруг вертикальной оси тела, отсчитываемых от произвольно выбранного углового положения, содержащих этап свободного замедленного замеряемого вращения и этап управляемого обратного симметричного вращения с сообщением крутящего момента сил в соответствующих угловых положениях, замеряют работу крутящего момента сил на обратном вращении на ограниченном угловом интервале через потребляемую электроэнергию, с использованием двух рубежных значений модулей вектора угловой скорости определяют присоединенный момент инерции тела. Устройство для определения присоединенного момента инерции тела содержит автоматизированный электропривод с упругим элементом в виде закручиваемого торсиона, при этом тело в виде корпуса судна закреплено через его центр масс с жестким стержнем с рамкой в опытовом бассейне, при этом упругий элемент в виде упругого стержня состоит из двух частей, одна из частей закреплена на рамке и на опоре, а вторая на жестком стержне и на дне опытового бассейна, при этом на жестком стержне закреплен электропривод и рамка, с которой сцеплен вал датчика угол-код, закрепленного на опоре, а электропривод выполнен в виде электродвигателя с энкодером и осесимметричным массивным маховиком, расположенным на валу двигателя соосно с вертикальной осью вращения корпуса судна. Технический результат заключается в расширении функциональных возможностей при идентификации присоединенных моментов инерции тел корабельной формы на системах программного управления. 2 н.п. ф-лы, 3 ил.

 

Изобретение относится к гидродинамике, измерительной технике, лабораторным установкам, судостроению и может быть использовано для определения осевого присоединенного момента инерции тела в виде корпуса модели судна, плавучих средств и сооружений симметричной формы при их реверсивно-симметричном вращении вокруг собственной неподвижной вертикальной оси с применением программных движений при неизвестном гидродинамическом сопротивлении. Рекомендуется для использования в судостроении на этапах проектирования корпусов судов.

Известен способ определения присоединенного момента инерции самоходного плавсредства (авторское свидетельство СССР №1064176, МКП G01M 10/00, дата приоритета 04.01.1983, опубл. 30.12.1983, Бюл. №48), заключающийся в нахождении разности между моментом инерции плавсредства в жидкости и его собственным моментом инерции, где момент инерции плавсредства в жидкости определяют как отношение момента тяги движителей относительно центра масс плавсредства к угловому ускорению, для чего измеряют тягу движителей при переложенных на борт рулевых устройствах, удерживая плавсредство связью от продольных перемещений с одновременным изменением положения точки закрепления упомянутой связи для исключения боковых перемещений, а также измеряют плечо тяги движителей относительно центра масс, после чего производят освобождение плавсредства от упомянутой связи и измеряют его угловое ускорение. Недостатком данного способа является невысокая точность и производительность, связанные с тем, что необходимо выполнять достаточно сложное натурное испытание, слабо учитывается влияние гидродинамического момента сопротивления и работы движителей на результат измерения.

Известно устройство для определения присоединенных масс, моментов инерции и демпфирования моделей судов методами их свободных колебаний в жидкости (патент РФ №2425343, МКП G01M 1/16, дата приоритета 10.12.2009, опубл. 27.07.2011, Бюл. №21), в котором методом свободных колебаний в продольных и поперечных плоскостях на воздухе определяют положение центра масс и собственные моменты инерции относительно вертикальной, горизонтальной и поперечной осей модели, подвешенной на бифилярном подвесе, с возможностью изменения длины подвеса и расстояния между бифилярами, находящейся в гидролотке и уравновешенной по ватерлинию, снабженной дополнительным грузом с обеспечением сохранения осадки, с произведенной статической тарировкой модели в воде, с определением коэффициентов ее условной остойчивости, с отклонением модели и записью ее свободных затухающих колебаний. Присоединенные моменты инерции вычисляют известными методами по суммарным моментам инерции и демпфирования модели за вычетом соответственных значений, полученных при испытании модели в воздухе. Недостатком данного устройства является его невысокая точность и трудоемкость, связанные с необходимостью точной тарировки модели, а также описаны только опыты, связанные с измерением присоединенного момента инерции относительно продольной и поперечной осей модели.

Наиболее близким к изобретению является способ определения тензора инерции тела (патент РФ №2436055, МКП G01M 1/10, дата приоритета 04.05.2009, опубл. 10.12.2011, Бюл. №34), заключающийся в том, что тело размещают во внутренней рамке двухосного двухрамочного карданова подвеса, имеющего цилиндрическую форму, горизонтальную подвижную собственную ось вращения и внешнюю рамку с вертикальной осью прецессии, сообщают ему управляемым электродвигателем и упругим закручиваемым элементом реверсивно-симметричное двухосное сферическое движение, состоящее из непрограммного сферического замедленного вращения по углам прецессии и собственного вращения, синхронных и прямопропорциональных между собой и обратного ускоренного, симметричного по отношению к замедленному программному движению в обратном направлении по программе, построенной по текущим замерам тормозного движения. На таком реверсивном симметричном сферическом движении измеряют расходы электроэнергии на десяти интервалах угла собственного поворота. По двадцати значениям расходов энергии с вычетом тепловых омических расходов в обмотках вычисляют пять осевых моментов инерции относительно пяти положений в теле мгновенной оси вращения. Шестой осевой момент инерции определяют отдельно на вращательном движении тела вокруг вертикальной оси прецессии при отключенном собственном вращении с замерами расхода энергии. Недостатком данного способа является то, что он позволяет нераздельно определять собственные моменты инерции вместе с присоединенными моментами инерции погруженного в жидкость тела.

Наиболее близким к изобретению устройством является устройство для определения тензора инерции тела (патент РФ №2436055, МКП G01M 1/10, дата приоритета 04.05.2009, опубл. 10.12.2011, Бюл. №34), содержащее двухосный карданов подвес, имеющий внешнюю рамку с валом и внутреннюю рамку-платформу с валом с возможностью размещения в ней тела, автоматизированного электропривода в виде электродвигателя и зубчатого передаточного механизма с переключающими муфтами, внутренняя рамка выполнена в виде полого осесимметричного цилиндра, электродвигатель содержит упругий элемент в виде закручиваемого торсиона, составляющего с ним гибридный двигатель, а передаточный зубчатый механизм состоит из конического колеса, сцепленного с цилиндром, соосного с внутренним валом, и неподвижного конического колеса, соосного с внешней рамкой с возможностью отключения его электромуфтами посредством продольного перемещения с одновременным отключением вращения внутренней рамки. Недостатком устройства является то, что оно не позволяет производить измерение присоединенных моментов инерции для тела, помещенного в жидкость.

Решается задача расширения функциональных возможностей способа и устройства для определения присоединенных моментов инерции тел на системах программного управления, способных исполнять программные неравномерные симметричные угловые движения вокруг неподвижной оси тела, проходящей через его центр масс.

Сущность изобретения заключается в том, что телу в виде корпуса судна, погруженному в опытовый бассейн с жидкостью по ватерлинию или с заданной осадкой, с установленным на вертикальной оси корпуса судна управляемым электродвигателем (со встроенным энкодером) с осесимметричным маховиком, упругим закручиваемым стержнем сообщают полупрограммное неравномерное реверсивно-симметричное вращательное движение вокруг вертикальной оси, отсчитываемое от произвольно выбранного углового положения, содержащее этап произвольного существенно непрограммного замедленного замеряемого вращения на ограниченном угловом интервале и этап ускоренного обратного симметричного первому этапу управляемого вращения в обратном направлении, построенного по замерам угла поворота при тормозном движении. На таком реверсивном симметричном движении замеряют работу крутящего момента сил, создаваемого электродвигателем с маховиком на обратном вращении через потребляемую электроэнергию с учетом обнуления разности работ гидродинамического момента, учетом расхода энергии на магнитные, электрические и механические потери в двигателе, оцененные по известному коэффициенту полезного действия двигателя, с учетом момента инерции тела, с использованием рубежных значений модулей вектора угловой скорости маховика и тела, с использованием рубежных положений тела определяют присоединенный момент инерции тела.

Сущность заключается в том, что в устройстве тело в виде корпуса судна закреплено через центр масс корпуса с жестким стержнем с рамкой в опытовом бассейне, жесткий стержень сцеплен с упругим стержнем, состоящим из двух частей, одна часть закреплена на рамке и на опоре, а вторая на жестком стержне и на дне опытового бассейна, при этом электропривод, закрепленный на жестком стержне, выполнен в виде электродвигателя с энкодером и осесимметричным маховиком, расположенным на валу двигателя соосным с вертикальной осью вращения корпуса судна, датчик угол-код закреплен на опоре, вал датчика угол-код сцеплен с рамкой.

Идентификация присоединенного момента инерции тела в виде корпуса судна осуществляется следующим образом. Корпус судна, симметричный относительно плоскости xOz, закреплен в опытовом бассейне через продетый через центр масс корпуса судна жесткий стержень, соосно с вертикальной осью вращения корпуса судна. Основным двигателем является упругое устройство. Ось электродвигателя с маховиком расположена на малом расстоянии l от оси Oz. Рассматривается плоское вращательное движение корпуса судна в горизонтальной плоскости Оху, где - векторная угловая скорость корпуса судна, - скалярная угловая скорость корпуса судна, - векторная угловая скорость маховика, - скалярная угловая скорость маховика, - абсолютная угловая скорость маховика, J1 и J2 - моменты инерции корпуса судна и маховика, λ66 - присоединенный момент инерции воды при рыскании корпуса судна (вокруг вертикальной оси), m - масса маховика, - скорость полюса, взятого на палубе корпуса судна или в плоскости ватерлинии. Моменты инерции жесткого стержня, рамки со статором электродвигателя принимаются малыми и не влияющими на измерение.

Кинетические энергии корпуса Т1, маховика T2 и жидкости T3:

Кинетическая энергия системы Т: корпуса судна, маховика и жидкости:

Уравнение (4) в матричной форме:

при вектор-столбце угловых скоростей и матрице инерции механической системы

К механической системе приложена пара сил, характеризуемая моментом упругих сил закрученного упругого стержня М1, мощность которого P1; крутящим моментом электродвигателя М2, мощность которого P2; приложен гидродинамический диссипативный момент М3, которые будем считать приведенными к углу ϕ с мощностью Р3. Маломощный электродвигатель выполняет лишь корректирующую функцию со сравнительно малым потреблением электроэнергии и, соответственно, с весьма малыми потерями энергии в электродвигателе, которыми можно пренебречь или учесть приближенно.

Общая мощность системы приложенных моментов пар сил:

Отсюда находим обобщенные моменты в виде коэффициентов при ω1z и Ω. Вектор-столбец обобщенных моментов:

, при Q=М1, Q2=M2, Q3=M3.

Считаем, что корпус судна с упругим стержнем, работающим на кручение, закручивается вокруг вертикальной оси Oz на отрицательный угол ϕ0=-α и отпускается без начальной угловой скорости. Наблюдается свободное разгонно-тормозное движение, состоящее из ускоренного движения на интервале времени , почти равномерного движения на интервале и замедленного движения на интервале с мгновенной остановкой при t2 (при угле ϕ2). Замедленное движение, совершаемое за интервал времени на угловом интервале замеряется.

Работа пар сил на угловом интервале :

где , , , с - жесткость упругого стержня.

По теореме об изменении кинетической энергии в дифференциальной форме имеем:

Подставляя выражение (4) и (5) в (7), учитывая, что , и получаем одно скалярное дифференциальное уравнение вида:

или

Датчик угол-код замеряет множество узловых значений угла поворота и угловой скорости корпуса судна, по которым компьютерная программа методом точечной аппроксимации определяет кинематическое уравнение вращения вида ϕ(t)=ƒ(t) на интервале , на основании которого составляется функциональное уравнение обратного симметричного движения ϕ(t')=ƒ(t'), , а также дополнительно определяются значения угловых скоростей судна ω1z(t). Причем ϕ2<|α|. Затем выполняется программное симметричное обратное движение по построенному функциональному уравнению, управляемое электродвигателем с замерами текущего расхода электроэнергии. Встроенный в электродвигатель энкодер определяет узловые значения угловой скорости маховика Ωz(2t2-t).

В целом уравнение симметричного возвратного тормозного-разгонного движения имеет вид:

По данным текущего расхода электроэнергии на интервале на угловом интервале , где α<0, ϕ1>0, отбросив данные в полосе , где движение близко к равномерному, т.к. их учет понизит точность, по теореме изменения механической энергии механической системы и присоединенной жидкости на интервалах движения и обратного движения получим уравнения для прямого и обратного движения:

где , т.к. обратное движение начинается с нулевыми скоростями судна и маховика.

Здесь и Тβ - кинетические энергии системы в краевых угловых положениях, т.е. при ϕ=β и ϕ=ϕ2, причем Тβ определяется для прямого, а для обратного движения; и Пβ - потенциальные энергии упругого стержня, работающего на кручение вокруг оси Oz в этих положениях, и - работы крутящего момента электродвигателя, выполненные на прямом и обратном оборотах, ω - угловая скорость корпуса судна в положении ϕ=β, В<0, В<0 - отрицательные работы диссипативных гидродинамических моментов.

Вычитая почленно уравнение (11) из (10), полагая, что работы диссипативных моментов на двух симметричных движениях совпадают и прямое движение выполняется при отключенном электродвигателе, получим уравнение, не содержащее диссипативных работ:

Подставляя уравнение (4) в (12) с учетом угловых положений, получим:

Здесь Ωβ - угловая скорость маховика в положении ϕ=β.

Обозначим - электроэнергия, потребляемая электродвигателем на обратном движении на угловом интервале . Эта энергия расходуется на изменение механической энергии системы и на диссипацию энергии через конструктивное трение, электромагнитные и электрические потери. Механическую работу А электродвигателя можно определить как разность потребляемой электродвигателем энергии и омическим расходом ε, которая определяется формулой:

В случае если потери в системе малы и если движение осуществляется в основном за счет начальной кинетической энергии и энергии упругого стержня, а двигатель обеспечивает лишь корректирующую роль - поддерживает симметричность реверсивного движения, то с достаточной точностью можно полагать ε=0. В общем случае величина ε может быть аналитически оценена или замерена на испытаниях типовых образцов.

Также механическую работу можно определить при известном коэффициенте полезного действия η электродвигателя:

Применяя формулу (14) либо (15) из (13) получаем расчетную формулу для присоединенного момента инерции λ66 относительно вертикальной оси вращения корпуса судна:

.

Эксперимент желательно в точности повторить несколько раз, совершив n одинаковых симметричных разгонно-тормозных колебаний и замерив затраченную электроэнергию при вращении на угловых интервалах обратного движения , получим:

.

В случае проведения n опытов на различных угловых интервалах, получено i ближних значений . При этом присоединенный момент инерции корпуса судна λ66 равен приближенно среднему арифметическому из этих значений.

Таким образом, заявляемый способ имеет высокую производительность, высокую точность в связи с тем, что исключает влияние диссипативных сил в виде гидродинамического момента на результат измерения и не требует движителей, контактирующих с жидкостью, не имеет необходимости корректировать движение корпуса судна в процессе измерения или прерывать эксперимент и позволяет определять присоединенные моменты инерции тел в виде корпусов судов вокруг вертикальной оси вращения, что является расширением функциональных возможностей.

Сущность предлагаемого изобретения поясняют Фиг. 1-3. где

На Фиг. 1 изображено устройство для осуществления способа, где

- тело в виде корпуса судна 1,

- электродвигатель 2,

- массивный маховик 3,

- жесткий стержень 4,

- опора 5,

- упругий стержень 6,

- опытовый бассейн 7,

- рамка 8,

- датчик угол-код 9.

Тело в виде корпуса судна 1 помещают в опытовый бассейн 7. При этом корпус судна 1 с центром масс О, через который корпус судна 1 закреплен с жестким стержнем 4 и с электродвигателем 2 со встроенным энкодером, массивный маховик 3 закреплен на валу электродвигателя 2, жесткий стержень 4 сцеплен с упругим стержнем 6, закрепленным на опоре 5 одним концом в точке А, а другим в точке В, рамка 8 сцеплена с жестким стержнем 4 и упругим стержнем 6 и соединена с датчиком угол-код 9, прикрепленным к опоре 5.

Такое устройство обеспечивает выполнение реверсивно-симметричных вращений тела вокруг вертикальной оси на выбранном угловом интервале, с одновременными замерами его угловой скорости, углового положения и угловой скорости маховика, необходимыми для осуществления способа.

В изобретении применяется энергоемкий упругий стержень 6 с возможностью предварительной начальной зарядкой его упругой потенциальной энергией, и электродвигатель 2 с функцией корректировки реверсивно-симметричного вращения с малым расходом энергии. Упругий стержень 6 и электродвигатель 2 составляют гибридный двигатель, маховик 3 соединен с ротором электродвигателя 2 через редуктор, вал датчика угол-код 9 соосно сцеплен с рамкой 8. Рамка 8 способна вращаться на неполный угол, ограниченный закреплением с опорой 5 датчика угол-код 9.

На Фиг. 2 представлены корпус судна 1, электродвигатель 2 с маховиком 3, жесткий стержень 4, центр масс корпуса судна О.

На Фиг. 3 корпус судна 1, электродвигатель 2, угол рыскания корпуса судна ϕ, угол поворота маховика 3 относительно корпуса судна ψ, орт вертикальной оси Oz, Ох - продольная ось корпуса судна, лежащая в его диаметральной плоскости, Оу - поперечная ось корпуса судна.

Устройство работает следующим образом. Упругий стержень 6, закрепленный на опоре 5 и на дне бассейна 7, закрученный вокруг вертикальной оси на начальный угол, задает непрограммное неравномерное вращение вокруг неподвижной точки О жесткому стержню 4 с закрепленным на нем корпусом судна 1 через его центр масс, рамке 8 и электродвигателю 2 со встроенным энкодером и маховиком 3. Симметричность программного движения обеспечена гибридным двигателем, состоящим из электродвигателя 2 с маховиком 3, корректирующим движение и упругого стержня 6, работающего на кручение. Текущее измерение угла поворота и угловой скорости корпуса судна 1 осуществляет датчик угол-код 9, закрепленный с опорой 5, аналитическую обработку результатов выполняет компьютер. При этом встроенным энкодером на обратном движении производится непосредственное измерение угловой скорости вращения маховика 3. Управление двигателем осуществляется автоматической системой программного управления. В результате устройство обеспечивает корпусу судна 1 требуемое программное движение.

Таким образом, предлагаемое изобретение позволяет решить задачу расширения функциональных возможностей в судостроении. Это достигается посредством применения полупрограммных движений и модифицированной конструкции.

1. Способ идентификации присоединенного момента инерции тела, заключающийся в том, что телу активным моментом сил сообщают реверсивно-симметричное прецессионное вращение вокруг вертикальной оси, замеряют разности работ активных моментов сил через разности потребляемой электроэнергии, по которым аналитически с применением уравнения изменения энергии, использования рубежных положений и модулей вектора угловой скорости определяют моменты инерции тела, отличающийся тем, что тело в виде корпуса судна погружают в опытовый бассейн по ватерлинию или с заданной осадкой и сообщают одно или несколько реверсивно-симметричных вращений моментом упругих сил вокруг вертикальной оси тела, отсчитываемых от произвольно выбранного углового положения, содержащих этап свободного замедленного замеряемого вращения и этап управляемого обратного симметричного вращения с сообщением крутящего момента сил в соответствующих угловых положениях, замеряют работу крутящего момента сил на обратном вращении на ограниченном угловом интервале через потребляемую электроэнергию с учетом обнуления разности работ гидродинамического момента, с учетом расхода энергии на магнитные, электрические и механические потери, с учетом момента инерции тела, с использованием двух рубежных значений модулей вектора угловой скорости определяют присоединенный момент инерции тела.

2. Устройство для определения присоединенного момента инерции тела, содержащее автоматизированный электропривод с упругим элементом в виде закручиваемого торсиона, отличающееся тем, что тело в виде корпуса судна закреплено через его центр масс с жестким стержнем с рамкой в опытовом бассейне, при этом упругий элемент в виде упругого стержня состоит из двух частей, одна из частей закреплена на рамке и на опоре, а вторая на жестком стержне и на дне опытового бассейна, при этом на жестком стержне закреплен электропривод и рамка, с которой сцеплен вал датчика угол-код, закрепленного на опоре, а электропривод выполнен в виде электродвигателя с энкодером и осесимметричным массивным маховиком, расположенным на валу двигателя соосно с вертикальной осью вращения корпуса судна.



 

Похожие патенты:

Изобретение относится к испытательной технике и может быть использовано для испытаний элементов глубоководной техники при давлениях, соответствующих предельным глубинам Мирового океана – более 100 МПа.

Группа изобретений относится к балансировке ротора электрической машины. Способ балансировки конструктивного элемента (1), в частности ротора электрической машины, заключатся в том, что штифты (11, 11') вводят в предварительно изготовленные отверстия (5, 7, 9) в роторе (1).

Настоящее изобретение относится к области лабораторных теплофизических измерений и, в частности, к определению тепловых, аэродинамических и гидравлических параметров рекуперативных теплообменных аппаратов различных типов, выполняемых в ходе учебной подготовки специалистов в области теплотехнического оборудования, испытаний теплообменных аппаратов с целью определения их основных параметров.

Изобретения относятся к транспортной технике, в частности к системам стабилизации лесозаготовительных машин. Настоящее изобретение относится к способу стабилизации по меньшей мере одной рамной части лесозаготовительной машины, содержащему этапы, на которых: определяют момент, приложенный полезной нагрузкой лесозаготовительной машины к поддерживаемой рамной части, и на основе момента, приложенного полезной нагрузкой к поддерживаемой рамной части, определяют величину и направление по меньшей мере одного опорного момента, необходимого по меньшей мере для стабилизации рамной части.

Изобретение относится к области авиационно-космической техники. Способ определения аэродинамического нагрева натуры в опережающих летных исследованиях на модели включает определение высоты и скорости полета модели, теплопроводности, объемной теплоемкости и степени черноты материала ее теплозащиты, а также аэродинамического теплового потока на наружной поверхности натуры в сходственных с моделью точках из условия подобия в этих точках распределений температуры в материалах теплозащиты модели и натуры.

Изобретение предназначено для балансировки колес и для замены шин. Установка содержит шпиндель (1), поддерживаемый с возможностью вращения на станине (2) станка и выполненный с возможностью установки и снятия сборки шина-обод или обода автомобильного колеса на него или с него, средства (3, 4) измерения дисбаланса, функционально соединенные со шпинделем (1) и имеющие, по меньшей мере, одно направление (12, 12а, 12b) измерения дисбаланса, в котором определяют усилия, создаваемые дисбалансом сборки (8, 9) шина-обод или ободом (9) колеса; приспособления (5, 6 и 44) шиномонтажного станка, опирающиеся на станину (2) станка и выполненные с возможностью монтажа шины на ободе и демонтажа шины с обода.

Изобретение относится к области машиностроения и предназначено для проверки балансировочных станков и подтверждения их характеристик. Контрольный ротор состоит из вала и диска, на валу установлены радиально-упорные подшипники, зафиксированные от осевого перемещения разрезными стопорными кольцами.

Изобретение относится к области фотометрии, и касается пассивной инфракрасной штриховой миры. Мира включает в себя штриховые элементы различных типоразмеров.

Группа изобретений относится к испытаниям газосепараторов, обеспечивающих работу погружных нефтяных насосов в условиях повышенного газосодержания. Способ испытаний газосепараторов включает нагнетание жидкости и газа в затрубное пространство модели обсадной колонны, формирование рабочей жидкости в виде газожидкостной смеси, разделение газожидкостной смеси с помощью испытуемого газосепаратора на дегазированную жидкость и свободный газ.

Зажимное устройство предназначено для коаксиального зажима инструментодержателя во вращающемся вокруг оси (3) вращения шпинделе балансировочной машины. Соединительный вал (8) в приемном отверстии опирается только в дискретных опорных положениях (11-15), которые в радиальном направлении имеют между собой промежутки и находятся в трех удаленных друг от друга, пересекающих ось (3) вращения плоскостях (E1, Е2, Е3) захвата.

Группа изобретений относится к области машиностроения, а именно к способам балансировки и балансировочной технике. Устройство для балансировки ротора включает основание, привод вращения, роликовые блоки, две анизотропные опоры. Каждая опора содержит датчики, регистрирующие вертикальную динамическую силу, действующую на опору, и датчики, регистрирующие виброперемещение опоры в горизонтальной плоскости. При этом в вертикальном направлении опоры устройства выполнены жесткими, а в горизонтальном направлении, перпендикулярном оси вращения, опоры устройства выполнены податливыми с возможностью перемещения. К каждой опоре шарнирно одним концом прикреплены подвижные элементы, при этом другим концом подвижные элементы прикреплены к траверсе, на траверсе закреплена гайка, в которую ввернут винт, на котором в свою очередь шарнирно закреплен роликовый блок, кроме того. Способ балансировки ротора включает размещение ротора на опорах устройства балансировки, разгон его до выбранной частоты вращения, регистрацию колебаний ротора, определение дисбаланса. Измерение дисбаланса производят одновременно как в дорезонансном режиме, так и в зарезонансном режиме. При этом в вертикальном направлении замеряют динамическую силу, действующую на опору, а в горизонтальном направлении измеряют виброперемещение опоры. Технический результат заключается в повышении точности и функциональных возможностей устройства за счет обеспечения возможности одновременного измерения дисбаланса изделия как в зарезонансном, так и дорезонансном режиме. 2 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится к способу контроля динамической балансировки лопастей несущего и рулевого винтов вертолета. Для контроля динамической балансировки проводят метрологическую экспертизу для оценки достоверности сигналов от датчиков и систем измерений, выбраковывают аномальные выбросы в последовательности измерений, накапливают обучающие массивы измерений сначала для режима висения вертолета без разворотов в горизонтальной плоскости, затем на различных режимах и скоростях горизонтального полета и затем всех контролируемых режимах полета, формируют индивидуальные допусковые границы параметров сбалансированности, измеряют текущие параметры сбалансированности и сравнивают с допусковыми границами, контроль проводят в реальном времени на борту вертолета и на наземном устройстве обработки зарегистрированной информации после выполнения полета с учетом результатов предыдущей эксплуатации. Обеспечивается регулярный достоверный контроль сбалансированности несущего и рулевого винтов вертолета и их лопастей. 1 ил.

Изобретение относится к измерительной технике, в частности к средствам и методам балансировки различных деталей. В способе с помощью весов, образованных для определения центра тяжести, измеряется положение центрирующей поверхности тела в отношении их базирующего элемента с помощью электрических датчиков перемещения. По сигналам измерения датчиков перемещения с помощью электрической схемы обработки рассчитывается эксцентриситет центрирующей поверхности тела к опорной точке весов. Взвешивается тело и регистрируется масса и положение центра тяжести тела в отношении опорной точки весов и с помощью схемы обработки по сигналам измерения весов и эксцентриситету центрирующей поверхности тела к опорной точки весов рассчитывается неуравновешенность тела. Устройство включает весы, образованные для определения центра тяжести тела, с базирующим элементом, который может принимать тело с вертикально ориентированной осью вращения, и центрирующие средства, которые устанавливают тело при укладке на базирующий элемент в основном в центрическое положение к опорной точке весов. Базирующий элемент имеет, по меньшей мере, два расположенных на определенном угловом расстоянии друг от друга электрических датчика перемещения, выполненных с возможностью измерения положения центрирующей поверхности тела в отношении базирующего элемента. Датчики перемещения присоединены к электрической схеме обработки, которая установлена для того, чтобы по сигналам измерения датчиков перемещения рассчитывать эксцентриситет центрирующей поверхности тела к опорной точке весов и по сигналам измерения весов, полученным при взвешивании тела, и рассчитанному эксцентриситету центрирующей поверхности рассчитывать центр тяжести и неуравновешенность тела. Технический результат заключается в повышении стабильности измерений, снижении предотвращения повреждений измеряемого тела. 2 н. и 9 з.п. ф-лы, 2 ил.

Изобретение относится к испытательной технике, в частности к имитационным камерам для имитации биологических, химических и/или физических воздействий окружающей среды. Устройство содержит две боковые стенки, нижнюю стенку, верхнюю стенку, наружную стенку и внутреннее пространство, имеющее расположенную во внутреннем пространстве на расстоянии от наружной стенки заднюю стенку, и по меньшей мере один вентилятор, расположенный между задней стенкой и наружной стенкой. При этом задняя стенка имеет вентиляторные отверстия для всасывания воздуха из внутреннего пространства посредством вентилятора, при этом задняя стенка имеет по меньшей мере одно отверстие и между задней стенкой и наружной стенкой, прилегая к каждой из них, расположена по меньшей мере одна первая дроссельная заслонка таким образом, что воздух, всасываемый вентилятором через вентиляторные отверстия задней стенки, после протекания через дроссельную заслонку может направляться через отверстие во внутреннее пространство. Технический результат заключается в упрощении конструкции, улучшении подачи воздуха и обеспечении равномерного распределения температуры во внутреннем пространстве имитационной камеры. 22 з.п. ф-лы, 9 ил.

Устройство (1) предназначено для зажима держателя сверлильного, фрезерного или абразивного инструмента в балансировочном станке и включает посадочный блок (2) с посадочным отверстием (9) для соединительного хвостовика инструмента и зажимную цангу (10). Шток (20) исполнительного блока (18) для приведения в действие зажимной цанги (10) расположен со скольжением в центральной расточке (19) посадочного блока (2). Шток (20) содержит на одном конце тело (22) ввода усилий, на которое опираются несколько пружин сжатия (30, 31), посредством которых может быть сжата зажимая цанга (10). Пружины сжатия (30, 31) расположены и/или выполнены так, что их усилия, действующие при сжатой зажимной цанге (10) на тело (22) ввода усилий, нагружают его по отношению к оси штока (20) асимметрично. Достигается облегчение перемещения штока и упрощение изготовления. 11 з.п. ф-лы, 1 ил.

Изобретение относится к способам проверки работоспособности и настройки внутритрубных инспекционных приборов и может быть использовано для испытаний с целью утверждения типа средства измерений, калибровки и поверки внутритрубных инспекционных приборов на трубопроводном испытательном полигоне. Заявленный метрологический полигон включает в себя испытательный стенд трубопроводного полигона, состоящий из нескольких кольцевых петель разного диаметра, имитирующих участки магистрального трубопровода, и программно-аппаратный комплекс обработки информации, при этом испытательный стенд включает в себя съемные трубные элементы, являющиеся мерами моделей дефектов, причем съемные трубные элементы состоят из участков, которые соединены сварными швами, являющимися маркерами начала и конца каждого участка, при этом участок является зоной измерений и на нем нанесены искусственные дефекты, а съемные трубные элементы выполнены с возможностью определения типа внутритрубного инспекционного прибора как средства измерений, а программно-аппаратный комплекс обработки информации выполнен с возможностью утверждения типа внутритрубного инспекционного прибора как средства измерений и включает в себя блок по поверке и испытаниям внутритрубных инспекционных приборов и блок по калибровке внутритрубных инспекционных приборов. Техническим результатом заявленного изобретения является расширение функциональных возможностей трубопроводного испытательного полигона за счет того, что обеспечены условия для проведения метрологических работ для испытаний с целью утверждения типа средства измерений, калибровки и поверки внутритрубных инспекционных приборов как средства измерения на трубопроводном испытательном полигоне. 13 з.п. ф-лы, 5 ил.

Изобретение относится к испытательной технике и может быть использовано для испытаний как объектов, содержащих взрывчатые и токсичные вещества, так и товаров народно-хозяйственного назначения на различные тепловые воздействия, включая воздействие открытого пламени очага пожара. Установка для испытаний объекта на температурные воздействия содержит установленную на фундаменте рабочую камеру с размещенными внутри устройством для крепления объекта испытаний и источником температурного воздействия в виде топливного коллектора, установленного под объектом испытаний, запальное устройство и вытяжное отверстие в крыше камеры с возможностью его перекрытия. Рабочая камера является сборной металлической конструкцией. Стенки камеры образованы установленными на фундаменте стойками, скрепленными поперечными балками с навешанными на них с возможностью съема металлическими модулями. Крыша камеры выполнена съемной, снаружи крыша и модули оснащены металлическим профилем. Модули приподняты над фундаментом с образованием воздушного зазора, снаружи прикрываемого отстоящими на некотором расстоянии от стенок камеры опорными модульными элементами. Каждая трубка топливного коллектора выполнена со сквозными резьбовыми отверстиями для распыления топлива, размещенными друг от друга на расстоянии, обеспечивающем условие перекрытия факелов распыляемого топлива, истекаемого из соседних отверстий, при этом устройство для крепления объекта испытаний выполнено в виде подставки из сварного металлического профиля. Технический результат - создание трансформируемой мобильной установки, допускающей ее разборку и сборку под широкий диапазон объектов испытаний при обеспечении создания равномерного температурного поля внутри камеры, увеличение ресурса и экономичности установки. 2 ил.

Изобретение относится к балансировочной технике и может быть использовано в горизонтальных балансировочных станках. Устройство содержит опоры, опорные мостики, привод ротора, причем опорный мостик каждой опоры соответственно соединен с соответствующей опорой через две плоские пружины для первой опоры и две для второй опоры, на каждой из которых закреплен тензорезистор, на каждой плоской пружине симметрично тензорезистору относительно ее плоскости установлен дополнительный тензорезистор, все тензорезисторы ориентированы по вертикальной оси чувствительности, выводы каждого из тензорезисторов соединены с входом соответствующего согласующего усилителя, выходы которых соединены с входами блока вычисления веса, амплитуд и фаз дисбалансов, дополнительный вход которого соединен с выходом датчика фазовой метки, а привод связан с балансируемым ротором ременной передачей. На выходах блока вычисления веса, амплитуд и фаз дисбалансов формируются соответствующие сигналы результатов измерения. Технический эффект заключается в обеспечении расширения функциональных возможностей, повышения помехоустойчивости и расширения диапазона измерений. 6 з.п. ф-лы, 5 ил.

Изобретение относится к испытательной технике, в частности к стендам для испытания форсунок, предназначенных для распыления воды под высоким давлением при тушении пожара, и может быть использовано для определения расхода воды через форсунку. Стенд включает электродвигатель, насос, устройство для закрепления форсунки, связанное нагнетательной линией с насосом, емкость для воды, связанная всасывающей линией с насосом, частотный преобразователь, вход которого связан с выходом регулятора, приемную воронку, связанную сливной линией с емкостью для воды. В нагнетательной линии установлены обратный клапан, два манометра, между которыми расположен кран управления, датчик давления. Выход датчика давления связан с входом частотного преобразователя, а выход последнего связан с электродвигателем. Между частотным преобразователем и датчиком давления расположен переключатель режимов. Нагнетательная линия связана с емкостью для воды байпасной линией, в которой установлен разгрузочный клапан, линия управления которого соединена с нагнетательной линией на участке между обратным клапаном и краном управления. Во всасывающей линии установлены расходомер, связанный с индикатором расхода. Технический результат - обеспечение точности измерения расхода воды через форсунку, возможность замены форсунки при работающем насосе, поддержание заданного давления постоянным в процессе испытания форсунки, надежность работы благодаря возможности функционировать в ручном или автоматическом режиме. 4 з.п. ф-лы, 1 ил.

Группа изобретений относится к испытаниям гидравлических машин и предназначена для измерения рабочих характеристик погружных газосепараторов, используемых при добыче нефти. Способ испытания газосепараторов на газожидкостных смесях включает измерение расходов в линиях подвода жидкости и газа на входе в газосепаратор (1), формирование газожидкостной смеси, сепарацию в газосепараторе (1). Подачу потока газожидкостной смеси осуществляют непосредственно в основание газосепаратора (1). Поток из выкидных отверстий (3) газосепаратора (1) направляют в дополнительное устройство (10) для сепарации жидкости и газа. Отсепарированную в дополнительном устройстве (10) жидкость подают в испытуемый газосепаратор (1), а отсепарированный газ - в атмосферу, при этом обеспечивается примерное равенство давлений на входе и выходе газосепаратора (1). Затем измеряют расход потоков жидкости и газа, отсепарированных в дополнительном устройстве (10). По данным измерений расходов вычисляют коэффициент сепарации испытуемого газосепаратора. Группа изобретений направлена на повышение точности измерения сепарационной характеристики испытываемого газосепаратора за счет более полного моделирования скважинных условий, сокращение времени испытания. 2 н. и 8 з.п. ф-лы, 3 ил.
Наверх