Способы тепловой обработки мясных полуфабрикатов с использованием современных электрофизических методов нагрева

Изобретение относится к пищевой промышленности, общественному питанию, а именно к способу тепловой обработки мясных изделий. При обработке мясных натуральных полуфабрикатов поддерживают плотность потока 7 кВт/м2, расстояние до верхнего излучателя 10 см и температуру в рабочей камере 166°С в течение 9 мин. Обработку бифштекса рубленого осуществляет в двухстадийном режиме в течение 12 мин, при этом на первой стадии плотность потока составляет 3 кВт/м2, на второй стадии 7 кВт/м2. При обработке котлет с растительными добавками, выбранными из ламинарии, моркови и лука, поддерживают плотность излучения 6 кВт/м2 и температуру среды рабочей камеры 179-180°С. Режимы тепловой обработки дают возможность минимизировать потери нутриентов, жирных кислот, витаминов, сократить потери энергетической и пищевой ценности мясных полуфабрикатов. 7 табл.

 

Изобретение относится к пищевой промышленности, а именно к производству мясных изделий.

Известен способ тепловой обработки пищевых продуктов в микроволновой печи фирмы «Ferrete», при котором используется односторонняя подача инфракрасного излучения (далее ИК-излучения) [Микроволновая печь FW 700 DL 17-K4 FERETTE. Руководство по эксплуатации по микроволновой печи, 11 с.].

Недостатком указанного способа является медленный и неравномерный прогрев продукта, так как тепловую обработку ведут в режиме односторонней подачи энергии ИК-излучения, и предназначен для тонкослойных мясных изделий.

Известен способ тепловой обработки пищевых продуктов, в том числе мясных полуфабрикатов в микроволновой печи германской фирмы «Bork», при котором тепловую обработку ведут в комбинированном режиме с односторонней подачей энергии инфракрасного излучения [Микроволновая печь MW II MW 4320 ВК Инструкция по эксплуатации, 27 с.].

Этому способу присущи недостатки предыдущего аналога.

На сегодняшний день очень много СВЧ-печей разных фирм-производителей в которых используется комбинированный нагрев, в печах присутствуют также инфракрасный нагрев, в качестве нагревателей служат ТЭНы (темные излучатели) или кварцевые лампы (светлые излучатели типа КГТ).

Мясные полуфабрикаты, прошедшие тепловую обработку в вышеуказанных печах и при различных режимах СВЧ ИК, в комбинации СВЧ и ИК не всегда имеют положительные качественные показатели.

Известен способ производства запеченных мясных изделий, включающий тепловую обработку инфракрасными лучами в две стадии и обработку воздушной средой, при этом на первой стадии обработка ведется инфракрасными лучами длиной волны 2-10 мкм, максимальная величина длины волны должна достигнуть 3,5-3,8 мкм, интенсивность теплового потока 6500-7000 Вт/м2, на второй стадии длина волны составляет 0,76-3,5 мкм, максимальная величина длины волны должна достигнуть 1,04 мкм, интенсивность теплового потока 3600-4000 Вт/м2, причем на первой стадии обработку осуществляют в течение 2-5 мин, на второй - 40-45 мин, а тепловую обработку воздушной средой проводят при 110-115°С в течении 15-20 мин, в промежутке между первой и второй стадиями воздействия на продукт инфракрасными лучами осуществляют выдержку в воздушной среде при 110-115°С в течение 5-8 мин [SU 533100 А1, «Способ производства запеченных мясных изделий», 25.06.1978].

Однако данный способ тепловой обработки предназначен для запекания крупнокусковых мясных изделий, так как в описании указаны размеры карбонада 300×70×90 мм требующей продолжительной тепловой обработки почти весь процесс тепловой обработки длится около 60 мин, тем более между двумя стадиями тепловая обработка осуществляется воздушной средой, либо на этой стадии подачу энергии прекращают и теплообмен между продуктом и средой осуществляется за счет нагретой конструкции, либо для поддержания температуры воздушной среды 110-115°С необходимы дополнительные источники тепла, что делает процесс тепловой обработки трудоемким.

Для изделий меньших размеров данный способ тепловой обработки неприемлем, так как воздействие инфракрасными лучами в данном режиме вызовет обугливание мясных полуфабрикатов.

Известен способ тепловой обработки мясных полуфабрикатов, предусматривающий воздействие энергией ИК-излучения в установке камерного типа с двух сторон в двухстадийном переменном режиме, при этом на первой стадии плотностью ИК-излучения от 2-5 кВт/м2 с длиной волны 2,04 мкм в течение 4-5 мин, на второй стадии плотностью ИК-излучения 6-10 кВт/м2 с длиной волны 1,1 мкм до готовности продукта [5].

При проведение экспертизы были найдены патенты A US 3845227 А (US ARMY) от 29.10.1074, в котором разработан способ запекания грудинки с использованием ионизирующего эффекта с целью консервирования для увеличения сроков хранения [8].

Ионизирующее излучение - это потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество.

К ионизирующему излучению не относят видимый свет и ультрафиолетовое излучение, которые в отдельных случаях могут ионизировать вещество. Инфракрасное излучение и излучение радиодиапазонов не являются ионизирующим, поскольку их энергии недостаточно для ионизации атомов и молекул в основном состоянии.

Обоснование использование инфракрасной энергии для процессов тепловой обработки заключается в том, что лучистая энергия, проникая в глубь изделия, ускоряет биохимические и тепломассообменные процессы, что приводит к сокращению времени тепловой обработки в 1,5-2 раза по сравнению с традиционными способами.

Известно, что наибольшее значение проницаемости мяса (также, как и для большинства пищевых продуктов аналогичного строения) наблюдается в области ИК-спектра от 0.3 до 1.2 мкм [Рогов И.А., Некрутман С.В. Сверхвысокочастотный и инфракрасный нагрев пищевых продуктов. - М.: Пищевая промышленность, 1976, - 210 [3]].

Также авторам известно, что в литературном источнике книги Рогова И.А. «Электрофизические методы обработки пищевых продуктов. -М.: ВО «Агропромиздат» описаны обработка продуктов ИК-излучением с двух сторон с различным расположением инфракрасных излучателей, что обеспечивает возможность приготовления продуктов различной толщины.

Тепловые процессы классифицируются: запекание, припускание, тушение, брезирование, жарка, варка, все они отличаются подводом тепла и физической природой процесса.

В утвержденных ГОСТом «Сборниках рецептур блюд и кулинарных изделий» для предприятий общественного питания приводятся режимы тепловой обработки мясных полуфабрикатов, которые проводят в сковородах, затем в жарочных шкафах, процесс весьма трудоемкий и по времени очень продолжительный, приведенные режимы в сборниках рецептур далеки от оптимальных.

Приведенные в данном изобретении результаты научно-исследовательской работы являются продолжением разработки способов тепловой обработки с использованием инфракрасного нагрева и базируются на работах, полученные автором ранее [4, 7].

Разработанные способы тепловой обработки мясных полуфабрикатов энергией инфракрасного излучения базируется на всех тех исследованиях, результаты которых приведены на [с. 231-233, 4], систематизируют накопленный опыт по данному вопросу и предложенный способ является результатом продолжения исследований в области применения инфракрасных излучений для термообработки мясных продуктов.

Разработанные способы тепловой обработки предлагается использовать в печи камерного типа, предназначенной для предприятий общественного питания и домашних условиях.

Режимы были разработаны на основе планированного эксперимента и разработки компьютерной системы моделирования и оптимизации процесса тепловой обработки мясных полуфабрикатов с использованием инфракрасного энергоподвода, была определена оптимальная толщина мясного полуфабриката, оптимальная плотность лучистого потока каждой стадии нагрева, при которых сокращается время тепловой обработки мясных полуфабрикатов массой 119-107, 50-60 г в 1,5-2 раза, соответственно уменьшаются энергозатраты и сохраняются в максимальной степени биологическая ценность продукта: аминокислотный, жирнокислотный и витаминный состав, что актуально на сегодняшний день.

На основе расчетов и математической обработки результатов с использованием компьютерной системы проектирования пищевой и биологической ценности мясных полуфабрикатов предлагаются технологические режимы [6], при расчете был введен такой показатель, как функционал качества.

В результате оптимизации процесса для различных видов мясных полуфабрикатов получены:

- для модельных фаршевых систем (на примере бифштекса рубленого) рекомендуется двухстадийный инфракрасный нагрев с двухсторонним обогревом и доведение температуры в центре продукта до 80°С, потери нутриентов при этом составляет 0,04% и функционал качества имеет значение 0,84 при плотности лучистого потока 1 - стадии 3,5 кВт/м2, 2 - стадии 7,8 кВт/м2, время тепловой обработки составляет 12,8 мин.

- для кусковых полуфабрикатов из говяжьей вырезки, таких как мясные натуральные полуфабрикаты, температуру в камере рекомендуется поддерживать 166°С для доведения температуры в центре 80°С, время тепловой обработки до 9 мин; при этом минимальные потери нутриентов составляют 0,08% и функционал качества - максимальное значение 0,84.

- для модельных фаршевых систем, включающих компоненты растительного происхождения (на примере котлет с растительными добавками) рекомендуется температура в камере ИК-печи 179-180°С до доведения температуры в продукте 80°С, время тепловой обработки 10 мин, потери нутриентов при этом составляет 0,004%, функционал качества 0,96 [4].

Для подтверждения разработанных режимов, полученных компьютерным путем, были проведены эксперименты и дан сравнительный анализ режимов, при которых в максимальной степени сохраняются амино-жирнокислотный состав и витамины. необходимые для организма человека (таблицы 1-7) для мясных полуфабрикатов [4]:

1. Мясные натуральные кусковые полуфабрикаты.

2. Мясной бифштекс рубленый.

3. Котлета мясная с добавками растительного происхождения.

На основе теоретических расчетов и экспериментальных данных предложены:

Способ тепловой обработки мясных полуфабрикатов с использованием инфракрасного нагрева, характеризующийся тем, что при обработке мясных натуральных полуфабрикатов поддерживают плотность потока 7 кВт/м2, расстояние до верхнего излучателя 10 см и температуру в рабочей камере 166°С в течение 9 мин, обработку бифштекса рубленого осуществляет в двухстадийном режиме в течение 12 мин, при этом на первой стадии плотность потока составляет 3 кВт/м2, на второй стадии 7 кВт/м2, при обработке котлет с растительными добавками, выбранными из ламинарии, моркови и лука поддерживают плотность излучения 6 кВт/м2 и температуру среды рабочей камеры 179-180°С.

Способы тепловой обработки дают возможность минимизировать потери нутриентов, жирных кислот, витаминов, сократить потери энергетической и пищевой ценности мясных полуфабрикатов и функционал качества при этом максимальный, о чем свидетельствуют табличные данные об органолептической оценке и сравнительном анализе разработанных режимов.

1. Микроволновая печь MW II MW 4320 ВК. Инструкция по эксплуатации, 27 с.

2. Микроволновая печь FW 700 DL 17-K4 FERETTE. Руководство по эксплуатации по микроволновой печи, 11 с.

3. Рогов И.А. Сверхвысокочастотный нагрев пищевых продуктов: учебное пособие / И.А. Рогов, С.В. Некрутман. - М.: Агропромиздат, 1986. - 351 с.

4. Беляева М.А. Системный анализ технологий и бизнес-процессов в мясном производстве / М.А. Беляева. - Москва: ФГБОУ ВО «РЭУ им. Г.В. Плеханова», 2015. - 384 с. ISBN 978-5-7307-1051-1.

5. Патент 2295871 Российская Федерация «Способ тепловой обработки мясных полуфабрикатов энергией ИК-излучения» / И.А. Рогов, М.А. Беляева - заявл. 10.03.2005; опубл. 20.06.2005,- Бюл. №17, - С. 5.

6. Беляева М.А. Экспертная система моделирования и оптимизации тепловой обработки мясных изделий или проектирование пищевой и биологической ценности мясных продуктов с учетом теплообмена: свидетельство об официальной регистрации программы для ЭВМ №200 6613723 / М.А. Беляева. - М., 2006.

7. Беляева М.А. Многокритериальная оптимизация процессов тепловой обработки мясных полуфабрикатов при ИК-энергоподводе // авторефер. дисс. докт. техн. наук / - М.: МГУПБ, 2009. - 50 с.

8. Патент US 3845227 А (US ARMY) от 29.10.1974.

Способ тепловой обработки мясных полуфабрикатов с использованием инфракрасного нагрева, характеризующийся тем, что при обработке мясных натуральных полуфабрикатов поддерживают плотность потока 7 кВт/м2, расстояние до верхнего излучателя 10 см и температуру в рабочей камере 166°С в течение 9 мин, обработку бифштекса рубленого осуществляет в двухстадийном режиме в течение 12 мин, при этом на первой стадии плотность потока составляет 3 кВт/м2, на второй стадии - 7 кВт/м2, при обработке котлет с растительными добавками, выбранными из ламинарии, моркови и лука поддерживают плотность излучения 6 кВт/м2 и температуру среды рабочей камеры 179-180°С.



 

Похожие патенты:

Настоящее изобретение относится к устройству (200) для тепловой обработки, в частности, сосисок, относящихся к типу сосисок (S), полученных соэкструзией. Указанное устройство (200) содержит: трубопровод (102), проходящий между впускным отверстием (104) и выпускным отверстием (106), через которое выходят сосиски (S) из трубопровода (102), приемное устройство (108), расположенное над впускным отверстием (104), входящее в трубопровод (102) у впускного отверстия (104) и предназначенное для обеспечения возможности введения сосисок (S) в трубопровод (102), насос (112), предназначенный для продвижения горячей воды в трубопровод (102) выше по потоку от впускного (104) отверстия или в приемном устройстве (108), при этом уровень (116) воды в приемном устройстве (108) находится выше уровня расположения выпускного отверстия (106) и уровня расположения впускного отверстия (104) и уровень расположения впускного отверстия (104) находится ниже уровня расположения верхней части змеевика (110), причем трубопровод (102) содержит между впускным отверстием (104) и выпускным отверстием (106) часть, имеющую форму змеевика (110) в виде нисходящей спирали, и восходящую часть (202), расположенную между впускным отверстием (104) и змеевиком (110).

Группа изобретений относится к способу и устройству для приготовления пищи, например мяса, рыбы, овощей и т.д., в частности к способу приготовления вышеуказанных продуктов при жарке на углях и/или слабом огне в жарочном оборудовании и устройству для его осуществления, используется в жарочном оборудовании: мангалах, грилях, жаровнях, барбекю, не оснащенных удерживающими продукты приспособлениями.

Изобретение относится к кухонной технике, в частности к электрической вафельнице. Электровафельница содержит основание, соединенное с верхним корпусом посредством шарнирного механизма.

Устройство для приготовления пищи, включающее в себя камеру (20) для приготовления пищи, выполненную с возможностью обеспечения отделения, в котором готовится пищевой продукт, тарелку (40), расположенную во внутренней части камеры для приготовления пищи и выполненную с возможностью поддержания пищевого продукта, ролики (51), расположенные на нижней стороне тарелки с возможностью качения в соответствии с вращением тарелки, вращающийся элемент (50), на котором установлены ролики, и предотвращающую часть (60), расположенную на нижней стороне тарелки и выполненную с возможностью предотвращения опрокидывания или отделения тарелки.

Заявленное изобретение относится к бытовым устройствам для быстрого, качественного и безопасного для здоровья приготовления пищевых продуктов в различных условиях на открытом воздухе, в кафе, в ресторане, передвижной точке питания.

Изобретение относится к предметам быта, а именно к устройству, пригодному для приготовления мясных или рыбных продуктов на открытом огне. Главной особенностью нового устройства является: возможность быстрой разборки каждого отдельного лезвийного соединения, что обеспечивает полную санитарную обработку устройства в целом; применение смещенного ряда группы лезвий позволяет более качественно перерезать волокна и жилы в мясном или рыбном продукте, что повышает вкусовые восприятия у приготовляемого продукта; использование съемных колец при выполнении угла самоторможения в шесть градусов сокращает время разборки устройства; использование нержавеющих сталей, карбонитридных покрытий толщиной в 10-15 мкм повышает срок службы устройств; использование гаек-барашков упрощает сборку устройств; применение щелей в 10-15 мм позволяет более рационально использовать поток горячего пламени при приготовлении мясного или рыбного продукта без допущения поверхностного прожога продукта.

Изобретение относится к пищевой промышленности, в частности к области приготовления пищевых продуктов путем их тепловой обработки, и может использоваться преимущественно для приготовления шашлыка, люля-кебаб, порционных кусков мяса, сосисок, сарделек, рыбы, грибов, хлеба с применением копчения.

Предложена туристическая печка-коптильня, при транспортировке убирающаяся в котелок. Печка приготавливает пищу в одном котелке и может коптить продукты в корпусе.

Изобретение относится к пищевой промышленности, а именно к фигурным пищевым продуктам и способу их изготовления. Формируют заготовки пищевых продуктов.

Кулинарная печь с вентиляционной решеткой, расположенной в варочной камере для рассеивания циркулирующего воздуха перед поступлением его во входное отверстие для воздуха к вентилятору.

Изобретение к пищевой промышленности, а именно к консервированным пищевым продуктам. Консервированный пищевой продукт вмещается в консервную банку, причем консервная банка содержит мясную эмульсию, занимающую внутреннее пространство консервной банки, и немясную эмульсию, полностью обволакивающую мясную эмульсию.
Изобретение относится к способу обработки пищевых продуктов, в частности мясных или колбасных изделий, с использованием нетрадиционного процесса нагревания, более конкретно омического нагрева.

Настоящее изобретение относится к применению питательной композиции с низким количеством белка у младенца, рожденного у матери без ожирения и избыточной массы тела.

Изобретение относится к кондитерской промышленности. Предложен способ получения мармелада с наноструктурированным экстрактом шпината, в котором 100 г сахара растворяют в 200 г воды и смесь уваривают в течение 10 мин, затем добавляют 2 г агар-агара и варят еще 5 мин, наливают 50 г яблочного пюре и доводят до кипения, остужают до 60°С, добавляют 150 мг наноструктурированного сухого экстракта шиповника в альгинате натрия или наноструктурированного сухого экстракта шпината в натрий карбоксиметилцеллюлозе и разливают по формам.

Изобретение относится к пищевой промышленности, а именно консервной, и может быть использовано при производстве пищевых продуктов на основе топинамбура, а именно для производства концентрированных консервов функционального назначения.

Изобретение относится к пищевой промышленности, а именно к способу получения натурального корригента «кокуми». Способ включает ферментирование источника растительного белка грибами Aspergillus sp.
Изобретение относится к пищевой промышленности, а именно к производству специализированных продуктов на основе сырья природного происхождения, которые могут быть использованы для питания спортсменов.

Изобретение относится к пищевой промышленности. Нардек состоит из цельного чернослива и концентрата сока арбуза, при следующем соотношении компонентов, мас.%: концентрат сока арбуза – 30-35; цельный чернослив – 65-70.

Изобретение относится к пищевому волокну из злаков для применения с целью замедления или иного снижения эффекта насыщения лечебного питания или лекарственного средства, где лечебное питание или лекарственное средство предназначено для перорального или гастроэнтерального применения человеком.
Изобретение относится к березовому экстракту с лекарственными растениями, который может быть использован в качестве противовоспалительного и иммуностимулирующего средства.

Изобретение относится к пищевому продукту с мягкой текстурой, содержащему медленно высвобождающуюся глюкозу. Предложен злаковый продукт, имеющий семена в виде цельной крупы или крупно- и/или мелкодробленой крупы, активность воды приблизительно 0,4 и более и содержание медленно высвобождающейся глюкозы (МВГ) более чем приблизительно 15 г на 100 г злакового продукта. Предложен способ изготовления выпеченного злакового продукта, включающий (а) приготовление теста, (б) формирование теста с образованием заготовок из теста, (в) выпекание заготовки из теста для получения выпеченного злакового продукта, такого что запеченный злаковый продукт имеет содержание МВГ, по меньшей мере, приблизительно 15 г на 100 г выпеченного злакового продукта и активность воды приблизительно 0,4 или более, где выпеченный злаковый продукт содержит семена в виде цельной крупы или крупно- и/или мелкодробленой крупы. Предложен питательный батончик, содержащий (а) активность воды приблизительно 0,4 и более, (б) содержание МВГ более чем 15 г на 100 г питательного батончика, (в) связующее вещество, подвергающееся тепловой обработке, и (г) семена в количестве приблизительно 15 мас.% или более питательного батончика, где семена находятся в виде цельной крупы или крупно- и/или мелкодробленой крупы. Также предложен способ приготовления питательного батончика, включающий (а) нагревание связующего вещества до температуры приблизительно 77°С (170°F) или более, (б) соединение связующего вещества с гречневой крупой и (в) охлаждение с образованием батончика, таким образом, чтобы после охлаждения питательный батончик содержал семена в количестве приблизительно 15 мас.% или более от массы питательного батончика, активность воды батончика составляла приблизительно 0,4 или более и содержание МВГ превышало приблизительно 15 г на 100 г питательного батончика, где семена находятся в виде цельной крупы или крупно- и/или мелкодробленой крупы. Изобретение позволяет получить злаковые продукты с желаемыми уровнями МВГ, которые обеспечивают благоприятный эффект при поддержании уровня глюкозы в крови в течение длительного времени. 4 н. и 21 з.п. ф-лы, 11 табл., 5 пр.
Наверх