Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозных отверстий в пластинах из полупроводниковых, керамических и стеклообразных материалов. Осуществляют разделение лазерного пучка на два. Воздействуют на обе стороны пластины пучками с равной плотностью энергии, которую рассчитывают по соотношению, связывающему удельную энергию сублимации материала Q, коэффициент отражения материала пластины R и показатель поглощения материала Х на длине волны воздействующего лазерного излучения, сначала воздействуют на обе стороны пластины пучком с одной плотностью энергии, а затем – с другой. Техническим результатом изобретения является снижение энергетических затрат при лазерной пробивке сквозных отверстий в пластинах из неметаллических материалов. 2 ил.

 

Способ лазерной пробивки сквозного отверстия в неметаллической пластине

МПК В23К 26/364

Изобретение относится к области технологических процессов и может быть использовано для лазерной пробивки отверстий в пластинах из полупроводниковых, керамических и стеклообразных материалов.

Известен способ лазерной обработки, в частности, используемый для создания отверстий в пластинах, в котором плотность энергии, необходимая для испарения слоя материала толщиной х, равна

,

где W – плотность энергии лазерного излучения;

х – координата, измеряемая от поверхности вглубь материала;

ρ – плотность материала;

Lи – скрытая теплота испарения единицы массы материала.

Лазерная техника и технология. В 7 кн. Кн. 4. Лазерная обработка неметаллических материалов: Учебное пособие для ВУЗов / А.Г. Григорьянц, А.А. Соколов. Под ред. А.Г. Григорьянца. – М.: Высшая школа, 1998. – 191 с.

Приведенное уравнение характеризует стационарный процесс испарения материала под действием лазерного излучения при его поглощении в очень тонком поверхностном слое материала (много меньше толщины испаренного слоя). Уравнение нельзя использовать, когда поглощение лазерного излучения происходит в объеме материала, например в слое материала толщиной в несколько миллиметров. Недостатком данного способа является отсутствие возможности определения оптимального значения плотности энергии лазерного излучения при обработке материалов, обладающих объемным поглощением излучения с длиной волны, на которой происходит обработка материала.

Известен также способ лазерной обработки неметаллических материалов, заключающийся в облучении их поверхности лазерными импульсами с плотностью энергии в импульсе, определяемой по соотношению

,

где е – основание натурального логарифма (е ≈ 2,7183);

Q – удельная энергия сублимации материала, Дж/м3;

χ – показатель поглощения материала пластины на длине волны лазерного излучения, м-1;

R – коэффициент отражения материала.

Патент РФ на изобретение № 2486628, МПК B23K 26/00, 27.06.2013.

При такой плотности энергии воздействующего лазерного излучения происходит сублимация поглощающего слоя материала толщиной 1/χ, причем максимальный удельный (на единицу вложенной энергии) унос массы материала составит величину

.

Для сквозного пробития отверстия в пластине необходимо, чтобы толщина пластины составляет величину 1/χ. Эти условия обеспечивают оптимальный режим обработки при одностороннем воздействии лазерного излучения на неметаллические материалы, обладающие объемным поглощением лазерного излучения. Недостатком способа является то, что он не позволяет проводить пробитие сквозных отверстий в неметаллических пластинах произвольной толщины, обладающих объемным поглощением лазерного излучения, при минимальных энергетических затратах.

Известен также способ лазерной пробивки сквозного отверстия в неметаллической пластине, включающий обработку поверхности пластины посредством лазерного импульса с длиной волны, обеспечивающей выполнение условия

1,2< χh < 3,1,

где h – толщина пластины,

при этом исходный лазерный пучок лазерного излучения разделяют на два пучка и одновременно соосно воздействуют на обе поверхности пластины с равной плотностью энергии, определяемой по соотношению:

.

Патент РФ на изобретение № 2582849, МПК B23K 26/364, 27.04.2016.

Так как длины волн технологических лазеров имеют определенные значения, а толщины пластин могут быть произвольными, трудно обеспечить режимы обработки, обеспечивающие минимальные затраты энергии.

Известен также способ лазерной пробивки сквозного отверстия в неметаллической пластине, включающий разделение лазерного пучка на два, воздействие на обе стороны пластины пучками с равной плотностью энергии, которую рассчитывают по соотношению, связывающему удельную энергию сублимации материала Q, коэффициент отражения материала пластины R и показатель поглощения материала χ на длине волны воздействующего лазерного излучения, сначала лазерным пучком воздействуют на одну поверхность пластины с плотностью энергии, определяемой по следующему соотношению

,

а воздействие на обе стороны пластины осуществляют с плотностью энергии, отличной от величины плотности энергии предыдущего воздействия, которую определяют по следующему соотношению

,

где е – основание натурального логарифма;

h – толщина пластины,

а χh >3,87.

Патент РФ на изобретение № 2647387, МПК , 15.03.2018. Указанный способ выбран в качестве прототипа.

Недостатком указанного способа является существенное увеличение энергетических затрат при пробитии отверстий в пластинах большой толщины, когда χh > 5.

Техническим результатом изобретения является снижение энергетических затрат при лазерной пробивке сквозных отверстий в пластинах из неметаллических материалов, обладающих объемным поглощением лазерного излучения, например, из полупроводниковых, керамических и стеклообразных материалов.

Технический результат достигается тем, что в способе лазерной пробивки сквозного отверстия в неметаллической пластине, включающем разделение лазерного пучка на два, воздействие на обе стороны пластины пучками с равной плотностью энергии, которую рассчитывают по соотношению, связывающему удельную энергию сублимации материала Q, коэффициент отражения материала пластины R и показатель поглощения материала χ на длине волны воздействующего лазерного излучения, сначала воздействуют на обе стороны пластины пучком с плотностью энергии, определяемой по соотношению

, (1)

а затем – с плотностью энергии, определяемой по соотношению

, (2)

где е – основание натурального логарифма;

h – толщина пластины;

а χh > 5.

Сущность изобретения поясняется чертежами.

На фиг. 1 представлена схема лазерной установки для реализации предложенного способа обработки.

На фиг. 2 зависимость отношения суммарной плотности энергии, необходимой для пробития сквозного отверстия в пластине по способу, описанному в прототипе, к суммарной плотности энергии, необходимой для пробития сквозного отверстия в пластине по представленному способу, от χh.

Установка содержит импульсный лазер 1, телескопический преобразователь диаметра пучка, состоящий из собирающей линзы 2 и рассеивающей линзы 3, диэлектрическое зеркало 4 с коэффициентом отражения 0,5 на длине волны лазера, осуществляющее разделение на два пучка равной плотности энергии исходного лазерного пучка, и двух диэлектрических зеркал 5 и 6 с коэффициентом отражения ~ 0,99, направляющих лазерное излучение на обе поверхности обрабатываемой пластины 7. При помощи телескопического преобразователя исходный лазерный пучок преобразуется в пучок требуемого диаметра с минимально возможной расходимостью.

Если

и , (3)

где а – коэффициент температуропроводности материала пластины;

RП – радиус пучка лазерного излучения после рассеивающей линзы,

то можно рассматривать задачу об испарении материала в одномерной постановке и пренебречь переносом энергии в материале за счет теплопроводности за время действия лазерного импульса.

Рассмотрим пластину толщиной h, обладающую показателем поглощения на длине волны лазерного излучения χ. Толщина пластины в относительных единицах будет χh. Для реализации предлагаемого способа пробивки сквозных отверстий в пластине вначале воздействуют на обе поверхности пластины с плотностью энергии, определяемой по уравнению (1). При этом толщина испаренного слоя материала с каждой поверхности пластины составит 1/χ (в относительных единицах χh=1). Оставшаяся неиспарённой толщина пластины в относительных единицах будет равна (χh – 2). Далее воздействуют на обе поверхности пластины лазерными пучками с плотностью энергии в каждом пучке, определяемой по формуле (2).

Суммарная плотность энергии, необходимая для пробития сквозного отверстия в пластине по способу, описанному в прототипе, составит

. (4)

Суммарная плотность энергии, необходимая для пробития сквозного отверстия в пластине по заявляемому способу, будет равна

. (5)

Разделив (5) на (4), получим

. (6)

На фиг. 2 показана зависимость . Видно, что при χh > 5 отношение становится меньше единицы. Следовательно, энергетические затраты на пробитие сквозного отверстия в пластине по заявляемому способу при χh > 5 меньше, чем в прототипе. По мере увеличения χh преимущества заявленного способа перед прототипом возрастают. Например, при χh = 8 f(χh) = 0,71.

Таким образом, достигается технический результат, заключающийся в уменьшении энергетических затрат при лазерной пробивке сквозных отверстий в неметаллических пластинах, обладающих объемным поглощением на длине волны лазерного излучения.

Способ лазерной пробивки сквозного отверстия в неметаллической пластине, включающий разделение лазерного пучка на два, воздействие на обе стороны пластины пучками с равной плотностью энергии, которую рассчитывают по соотношению, связывающему удельную энергию сублимации материала Q, коэффициент отражения материала пластины R и показатель поглощения материала Х на длине волны воздействующего лазерного излучения, отличающийся тем, что сначала воздействуют на обе стороны пластины пучком с плотностью энергии, определяемой по соотношению

,

а затем – с плотностью энергии, определяемой по соотношению

,

где е – основание натурального логарифма;

h – толщина пластины;

а Хh > 5.



 

Похожие патенты:

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине, например, из полупроводниковых, керамических и стеклообразных материалов.

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью энергии, зависящей от температуры отжига, начальной температуры пластины, удельной теплоемкости и плотности материала пластины, а также показателя поглощения материала пластины на длине волны лазерного излучения и возвращении назад в пластину при помощи диэлектрического зеркала излучения, вышедшего через ее тыльную поверхность, предварительно рассчитывают условие термопрочности пластины и, при его невыполнении, перед воздействием лазерного импульса нагревают пластину до температуры, зависящей от толщины пластины, механических, теплофизических и оптических свойств материала пластины.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что в способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью энергии, зависящей от температуры отжига, начальной температуры пластины, удельной теплоемкости и плотности материала пластины, а также показателя поглощения материала пластины на длине волны лазерного излучения, предварительно рассчитывают критерий термопрочности пластины и при его невыполнении перед воздействием лазерного импульса нагревают пластину до температуры, зависящей от толщины пластины, механических, теплофизических и оптических свойств материала пластины.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Использование: для отжига и легирования пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что поверхность обрабатываемого материала облучают импульсом лазерного излучения, при этом материал предварительно нагревают до температуры, рассчитываемой по соотношению где σПР - предел прочности материала на растяжение, Па; с0 - скорость звука в материале, м/с; К - модуль всестороннего сжатия, Па; α - коэффициент линейного расширения материала, К-1.

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что способ лазерной обработки неметаллических материалов заключается в облучении их поверхности импульсом лазерного излучения, формируют лазерный импульс, плотность энергии которого на облучаемой поверхности пластины определяется по представленному соотношению.

Настоящее изобретение относится к способу обработки азотированного/углеродоазотированного изделия, включающему: подвержение по меньшей мере части изделия первому этапу, на котором по меньшей мере один лазерный луч перемещают за по меньшей мере один проход над указанной частью до тех пор, пока поверхностный слой взятой части не будет преобразован частично или полностью, и до тех пор, пока распределение концентрации азота в зоне диффузии не будет изменено, и подвержение для преобразования поверхностного слоя части, по меньшей мере обработанной посредством лазера, второму этапу, на котором по меньшей мере один лазерный луч перемещают за по меньшей мере один проход над указанной частью, чтобы сделать возможным снижение концентрации азота в нижележащем диффузионном слое.

Изобретение относится к технологии лазерной сварки, в частности к способу защиты оптической лазерной головки в начале сварки. Техническим результатом является защита стекла лазерной оптической головки от брызг в начале лазерной сварки без использования дополнительного оборудования при увеличении производительности процесса сварки из-за уменьшения работ по замене защитного стекла.

Изобретение относится к способу ремонта охлаждаемых лопаток из жаропрочного суперсплава турбины газотурбинного двигателя. Способ включает предварительное удаление с поверхности пера лопатки теплозащитного покрытия, зачистку торца колодца пера лопатки от следов приработки, зачистку наружной и внутренней поверхности стенок колодца торца пера лопатки, установку и фиксацию лопатки в приспособлении, подачу соосно лазерному лучу потока металлического порошка, химический состав которого совпадает с материалом лопатки, наплавку торца колодца пера лопатки в среде защитного газа, термическую обработку в вакууме и контроль.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к устройству для лазерной обработки материалов, находящихся под водой, и может быть использовано в машиностроении и в других отраслях народного хозяйства.

Изобретение относится к технологии лазерной обработки материала, преимущественно к обработке поверхностного слоя металлического изделия сложной формы. Задачей изобретения является формирование максимально равномерного упрочненного слоя без оплавления поверхности при обработке по любым траекториям.

Изобретение относится к сварному соединению металлических листов и способу его изготовления. Соединение получают лазерной сваркой.

Изобретение относится к способу гибридной лазерно-дуговой сварки стальных труб с наружным плакирующим слоем и может быть использовано при производстве сварных стальных труб большого диаметра с толщиной стенки до 25 мм.

Способ предназначен для автоматической лазерной двусторонней сварки горловины с тонкостенной оболочкой. Горловину выполняют с внешним и внутренним буртами.

Изобретение относится к способу формирования функционально-градиентного покрытия селективной лазерной наплавкой. В фокус лазерного излучения подают порошковый материал по крайней мере из двух автономно работающих дозаторов, в одном из которых находится порошок с низкой микротвердостью (менее HRC30) и высоким коэффициентом термического расширения (КТР) (более 9*10-6 К-1), а в другом - с высокой микротвердостью (более HRC70) и низким КТР (менее 6*10-6 К-1).

Изобретение относится к способу лазерного послойного синтеза объемных изделий из порошков и может быть использовано в авиационной и ракетной технике. Способ включает создание с помощью системы трехмерного геометрического моделирования виртуальной модели изготавливаемого объемного изделия. Разбивку виртуальной модели на тонкие поперечные слои. Лазерный послойный синтез объемного изделия спеканием или сплавлением поперечных слоев порошка. При этом толщину hсп поперечного слоя порошка определяют с учетом толщины hyc усадки поперечного слоя порошка при спекании или сплавлении из условия hсм=(hсп-hус)≤ПД, где ПД - поле допуска на номинальный профиль поверхности объемного изделия; hсм - толщина поперечного слоя сформированного материала. Образующая профиля поверхности объемного изделия проходит через среднюю линию поперечного слоя сформированного материала. Технический результат заключается в повышении производительности лазерного послойного синтеза объемных изделий из порошков. 2 ил.
Наверх