Способ теплового нагружения обтекателей ракет

Изобретение относится к способам тепловых испытаний элементов летательных аппаратов (ЛА), в частности керамических обтекателей ракет. Заявленный способ теплового нагружения обтекателей ракет из неметаллических материалов включает зонный радиационный нагрев обтекателя и измерение температуры. Нагрев локальной зоны обтекателя осуществляют через металлический экран, установленный вблизи его поверхности, при этом температуру поверхности локальной зоны обтекателя корректируют посредством нанесения на внутреннюю и внешнюю поверхности металлического экрана покрытия с требуемой степенью черноты. Внедрение предложенного способа позволяет расширить технические возможности испытательного оборудования для наземной отработки новых конструкций ракетной техники за счет повышения точности задания тепловых режимов. Технический результат - увеличение точности задания температурного поля в локальных зонах испытуемых изделий. 1 ил.

 

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях.

В настоящее время воспроизведение аэродинамического нагрева элементов летательных аппаратов осуществляется в различных установках: аэродинамических трубах, баллистических установках, плазменных установках, стендах на основе сжигания топлива (прямоточных реактивных двигателях) (Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. - М.: Машиностроение. - 1974. - 344 с; Материалы и покрытия в экстремальных условиях. Взгляд в будущее: В 3 т. - Т. 3. Экспериментальные исследования/ Ю.В. Полежаев, С.В. Резник, А.Н. Баранов и др., Под ред. Ю.В. Полежаева и С.В. Резника. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. - 264 с). Испытание натурных конструкций в таких установках требует огромных материальных затрат, поэтому широкого распространения в практике наземных испытаний эти установки не получили.

Наиболее широкое распространение в практике наземных испытаний получили стенды радиационного нагрева, так как они просты в эксплуатации, позволяют достаточно легко изменять конфигурацию нагревателя в зависимости от геометрии конструкции обтекателя и воспроизводить аэродинамического теплового воздействия.

Наиболее близким по технической сущности является способ, включающий радиационный нагрев авиационных конструкций с помощью нагревателей, разделенных на несколько зон нагрева, и контроль в этих зонах температуры с помощью измерительных преобразователей (Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. - М.: Машиностроение. - 1974. - 344 с.).

Разделение нагревателя на несколько зон нагрева обеспечивает необходимое распределение по координате температурного поля объекта испытания. Однако радиационный нагрев имеет ряд ограничений. Для элементов летательных аппаратов сложной формы, когда геометрические размеры конструкции сравнимы с размерами нагревателей, присутствует большая погрешность задания температурного поля. Кроме того при радиационном нагреве необходимо выравнивать степень черноты всей поверхности конструкции, которая обращена к нагревателям. Это осуществляют посредством нанесения на нее высокотемпературных порошков, например, из оксидов хрома, алюминия, кремния и др. Однако в ряде случаев нанесение покрытий не допускается, например, при высокотемпературном термоциклировании в установках радиационного нагрева конструкции со встроенными элементами с высокой степенью черноты, нагреваемая поверхность которых вступает во взаимодействие (химическое или механическое) с компонентами покрытия.

Техническим результатом предлагаемого изобретения является увеличение точности задания температурного поля в локальных зонах испытуемых изделий.

Указанный технический результат достигается тем, что способ теплового нагружения обтекателей ракет из неметаллических материалов, включающий зонный радиационный нагрев обтекателя и измерение температуры, отличающийся тем, что нагрев локальной зоны обтекателя осуществляют через металлический экран, установленный вблизи его поверхности, при этом температуру поверхности локальной зоны обтекателя корректируют посредством нанесения на внутреннюю и внешнюю поверхности металлического экрана покрытия с требуемой степенью черноты.

На фигуре приведена часть наружной поверхности 1 обтекателя 2, имеющего степень черноты ε1, с локальной зоной 3, степень черноты наружной поверхности которой ε3, причем ε1≠ε3. Обтекатель подвергается тепловому воздействию от нагревателя 4. На фигуре цифрой 5 обозначен тонкий металлический экран на внутренней и наружной поверхностях которого нанесены покрытия 6 и 7 со степенями черноты ε6 и ε7 соответственно.

Очевидно, что при ε1≠ε3 (без выравнивания степени черноты локальной зоны обтекателя 3 с остальной частью наружной поверхности 1) плотности падающих тепловых потоков непосредственно на поверхность локальной зоны и обтекателя в целом будут разные (пропорционально степени черноты), что не соответствует воспроизведению падающего теплового потока от пограничного слоя в реальных условиях работы обтекателя. В практике тепловых наземных испытаний равенство степени черноты обеспечивают высокотемпературными покрытиями, например, окисью хрома, однако, если покрытие локальной зоны взаимодействует с материалом покрытия для выравнивания степени черноты, этот способ не применим. Единственной возможностью коррекции является предлагаемый способ.

В действительности, если накрыть поверхность локальной зоны 3 тонким металлическим экраном 5, то за счет покрытий 6 и 7 можно корректировать температуру наружной поверхности локальной зоны 3.

Рассмотрим случай, когда степень черноты ε7 наружной поверхности экрана 5 постоянна. Теплообмен на поверхности обтекателя 2 и под металлическим экраном 5 при радиационном нагреве можно описать системой уравнений (1-5):

где q - плотность падающего теплового потока от нагревателя 4;

qa1 - плотность поглощаемого теплового потока покрытием обтекателя со степенью черноты ε1; q3 - плотность падающего теплового потока на поверхность локальной зоны обтекателя 3; εn — приведенная степень черноты; qа3 - плотность теплового потока поглощаемого наружной поверхностью локальной зоны обтекателя 3.

Решая систему уравнений (1-5) относительно температуры Т3 локальной зоны обтекателя 3 находим, что

Из (6) вытекает, что за счет изменения степени черноты ε6 внутренней поверхности тонкого металлического экрана 5 можно добиться требуемой температуры поверхности и условия qа1=qа3.

Применение предложенного способа коррекции дало возможность провести наземные тепловые испытание перспективной конструкции керамического обтекателя.

Предложенный способ расширяет технические возможности воспроизведения аэродинамического нагрева в установках радиационного нагрева.

Способ теплового нагружения обтекателей ракет из неметаллических материалов, включающий зонный радиационный нагрев обтекателя и измерение температуры, отличающийся тем, что нагрев локальной зоны обтекателя осуществляют через металлический экран, установленный вблизи его поверхности, при этом температуру поверхности локальной зоны обтекателя корректируют посредством нанесения на внутреннюю и внешнюю поверхности металлического экрана покрытия с требуемой степенью черноты.



 

Похожие патенты:

Изобретение относится к неразрушающему контролю скрытых дефектов в композиционных материалах и изделиях активным тепловым методом, используемых в авиакосмической, ракетной, атомной, машиностроительной и энергетической отраслях промышленности.

Изобретение относится к испытательной технике, определяющей тепловую стойкость конструкций изделия, в частности для имитации нагрева внешней поверхности отсека летательного аппарата (ЛА).

Изобретение относится к области испытаний твердых тел и может быть использовано для идентификации невидимой ткани. Новым является то, что испытания проводятся в четыре этапа.

Изобретение относится к технике наземных испытаний головных частей (обтекателей) летательных аппаратов (ЛА), а именно к способам контроля радиотехнических характеристик (РТХ) радиопрозрачного обтекателя (РПО) в условиях, имитирующих аэродинамический нагрев.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к испытательной технике и может быть использовано для исследования влияния эффекта морозного пучения грунта на заземляющий электрод. Предложенная установка для исследования влияния эффекта морозного пучения грунта на заземляющий электрод содержит полый корпус.

Изобретение относится к способам тепловых испытаний элементов летательных аппаратов, в частности керамических обтекателей ракет. Заявлен способ тепловых испытаний натурных керамических элементов летательных аппаратов, который включает нанесение на нагреваемую поверхность высокотемпературного покрытия с высокой степенью черноты, радиационный нагрев и измерение температуры.

Изобретения относятся к области измерительной техники и могут быть использованы для оценки надежности сложных пространственных конструкций из полимерных композиционных материалов (ПКМ).

Изобретение относится к области машиностроения, авиационной и ракетно-космической отраслям промышленности и может быть использовано на этапе наземной лабораторно-стендовой отработки конструкций летательных аппаратов (ЛА) и их элементов (головных обтекателей, радиопрозрачных вставок, окон и т.д.) для воспроизведения тепловых и комплексных воздействий, имитирующих эксплуатационные нагрузки.

Изобретения относятся к области измерительной техники и могут быть использованы для оценки надежности сложных пространственных конструкций из полимерных композиционных материалов (ПКМ) на основе результатов теплового контроля при нагружении изделий механическими колебаниями.

Устройство относится к контрольно-измерительной технике и может быть применено для измерения высоты и скорости полета воздушных судов на основании использования аэрометрического метода.

Изобретение относится к способам и устройствам, используемым для расчета пропускной способности проектируемых гидравлических трактов транспортных и дозирующих систем в химической, нефтехимической, авиационной, текстильной, лакокрасочной и других отраслях промышленности, в частности узлов транспортирования клеевых составов в сборочных производствах с клеевыми соединениями.

Изобретение относится к области контактных измерений параметров высокотемпературных газов, в частности к средствам измерения температуры газа и распределения ее значений в полостях высокотемпературных элементов газотурбинных двигателей, и может быть применено для экспериментальных исследований рабочего процесса силовых установок при проведении аэродинамических испытаний.

Изобретение относится к области экспериментальной аэродинамики и предназначено для определения аэродинамических характеристик модели самолетов, ракет и др. в трансзвуковых аэродинамических трубах.

Изобретение относится к области аэромеханических измерений и может быть использовано для измерения компонентов векторов аэродинамической силы и момента, действующих на модели воздушных винтов самолетов, несущих винтов вертолетов и гребных винтов судов, испытываемых в аэродинамических трубах, бассейнах и в гидроканалах.

Изобретение относится к испытательной технике и может быть использовано при проверке прочности оболочек антенных обтекателей из хрупких материалов, преимущественно керамических, при статических испытаниях.

Изобретение относится к устройствам для проведения аэродинамических испытаний. В аквааэродинамической трубе испытания проводятся путем погружения испытуемого объекта в водную среду.

Изобретение относится к устройствам, предназначенным для аэродинамических испытаний, и может быть использовано в авиастроении. Стенд включает динамометрическую платформу, предназначенную для закрепления объекта, установленную посредством по меньшей мере четырех пластин переменной жесткости на неподвижную опорную платформу с возможностью перемещения динамометрической платформы по трем ортогональным осям, причем каждая пластина выполнена с гибким участком, сопряженным с жесткими участками, и снабжена элементом измерения нагрузки, и отличается тем, что содержит датчик, регистрирующий продольные перемещения динамометрической платформы и предназначенный для измерения продольной нагрузки, а элемент измерения нагрузки выполнен в виде двух пар одинаковых тензорезисторных датчиков, предназначенных для измерения вертикальных и поперечных нагрузок, установленных на хотя бы одном гибком участке каждой пластины на одном уровне относительно неподвижной опорной платформы, датчики каждой пары установлены на противоположных широких сторонах пластины, причем вертикальные оси симметрии чувствительных элементов датчиков одной пары ориентированы вдоль вертикальной оси симметрии широкой стороны пластины, а вертикальные оси симметрии чувствительных элементов датчиков другой пары параллельны ей, датчики подключены в одно плечо отдельных измерительных мостов, причем датчики каждой пары подключены последовательно.

Изобретение относится к способу управления приемниками воздушных давлений (ПВД). Для управления ПВД выявляют неисправный ПВД путем измерения полного и статического давлений основного и резервного ПВД, определяют модули разности полного и статического давлений соответственно для основного и резервного ПВД, сравнивают их с заданными пороговыми значениями и выдают сигнал оповещения летчику об отказе при превышении пороговых значений.

Изобретение относится к области стендовой доработки летательных аппаратов. Способ испытания высокоскоростного летательного аппарата на силоизмерительной платформе под заданным углом атаки в испытательной камере, где создают разряжение, продувают испытательную камеру рабочей средой с протоком через отключенный двигатель летательного аппарата.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при разработке аэродинамических труб и проведении в них испытаний. Аэродинамическая труба содержит эжектор, который состоит из трех стволов, из которых как минимум один содержит перфорированное сопло.
Наверх