Водонагревательная установка с эффективным использованием солнечной энергии

Изобретение относится к области теплоэнергетики и возобновляемой энергетики и может быть использовано для теплоснабжения автономных объектов – жилых домов, санаториев, фермерских хозяйств и прочих автономных объектов. Водонагревательная установка с эффективным использованием солнечной энергии включает солнечный коллектор, соединенный с бойлером горячего водоснабжения через трехходовой клапан средней солнечной активности и трехходовой клапан высокой солнечной активности, тепловой насос, циркуляционный насос, циркуляционный насос первичного контура, трехходовой клапан, аккумулятор теплоты на фазовом переходе, соединенный с солнечным коллектором через трехходовой клапан низкой солнечной активности и буферную емкость отопления, соединенную через циркуляционный насос вторичного контура с тепловым насосом, и трехходовой клапан теплового насоса. Техническим результатом изобретения является повышение эффективности работы установки. 1 ил.

 

Изобретение относится к области теплоэнергетики и возобновляемой энергетики и может быть использовано для теплоснабжения автономных объектов – жилых домов, санаториев, фермерских хозяйств и прочих автономных объектов.

Известен солнечный водонагреватель (http://slarkenergy.ru/solar/ solnechnyj-vodonagrevatel.html), содержащий солнечный коллектор, бойлер косвенного нагрева с теплообменником внутри, циркуляционный насос.

Недостатками данного солнечного водонагревателя являются:

- солнечный водонагреватель предназначен для обеспечения горячего водоснабжения только от высокой солнечной активности и не работает эффективно в периоды межсезонья;

- солнечный водонагреватель содержит бойлер косвенного нагрева с применением воды в качестве теплоаккумулирующего вещества;

- при наступлении низкой или средней солнечной активности для обеспечения качественного горячего водоснабжения, необходимо производить догрев теплоносителя во внешнем источнике (например, в водогрейном котле).

Прототипом изобретения принимается солнечная установка [Патент RU № 2403511, опуб. 10.11.2010, МПК F24J 2/42], содержащая основной циркуляционный контур, включающий солнечный коллектор, обеспечивающий нагрев циркулирующего через него теплоносителя, бак-аккумулятор с патрубками подвода и отвода теплоносителя, потребитель тепла и систему регулирования, дополнительно снабжена двухступенчатым теплообменником, связанным с основным циркуляционным контуром через трехходовой клапан воздуховодом, установленным между солнечным коллектором и теплообменником, дополнительным циркуляционным контуром, связывающим теплообменник с баком-аккумулятором, а солнечный коллектор выполнен с возможностью нагрева циркулирующего через него воздуха.

Недостатками данного прототипа являются:

- аккумулирующим веществом в баке-аккумуляторе служит вода, ввиду чего не используется фазовый переход, а это увеличивает габариты бака-аккумулятора прототипа до 4 раз;

- установка способна полезно использовать только высокую и среднюю солнечные активности, без возможности использования низкой солнечной активности.

Задача изобретения – разработать водонагревательную установку с эффективным использованием солнечной энергии, способную обеспечивать отопление и горячее водоснабжение в любое время года при любой степени (кроме нулевой) – высокой, средней и низкой солнечной активности.

Техническим результатом изобретения является повышение эффективностью работы установки.

Технический результат изобретения достигается за счет того, что водонагревательная установка с эффективным использованием солнечной энергии включает солнечный коллектор, соединенный с бойлером горячего водоснабжения через трехходовой клапан средней солнечной активности и трехходовой клапан высокой солнечной активности, тепловой насос, циркуляционный насос, циркуляционный насос первичного контура, трехходовой клапан, аккумулятор теплоты на фазовом переходе, соединенный с солнечным коллектором через трехходовой клапан низкой солнечной активности и буферную емкость отопления, соединенную через циркуляционный насос вторичного контура с тепловым насосом и трехходовой клапан теплового насоса.

На чертеже представлена водонагревательная установка с эффективным использованием солнечной энергии.

Установка состоит из солнечного коллектора 1, перед которым, на трубопроводе, установлен циркуляционный насос 2, а после которого на трубопроводе установлены трехходовой клапан низкой солнечной активности 3, трехходовой клапан средней солнечной активности 4 и трехходовой клапан высокой солнечной активности 5. Трехходовой клапан низкой солнечной активности 3 посредством трубопровода (например, медного) соединен с компактным аккумулятором 6 теплоты на фазовом переходе, имеющим четыре патрубка для входа и выхода теплоносителя в режимах отопления и горячего водоснабжения. Компактный аккумулятор 6 теплоты на фазовом переходе через трубопроводы соединен с солнечным коллектором 1 и тепловым насосом 7. Между компактным аккумулятором 6 теплоты на фазовом переходе и тепловым насосом 7 установлен циркуляционный насос первичного контура 8 теплового насоса 7. Тепловой насос 7 через трубопровод соединен с циркуляционным насосом вторичного контура 9 теплового насоса 7 и через трехходовой клапан 10 теплового насоса 7 с буферной емкостью отопления 11, которая в свою очередь через трубопровод соединена с бойлером 12 горячего водоснабжения.

Рассмотрим принцип работы установки.

Водонагревательная установка с эффективным использованием солнечной энергии может работать в трех основных режимах.

Режим низкой солнечной активности.

В данном режиме работы теплоноситель, за счет работы циркуляционного насоса 2, проходит через солнечный коллектор 1, нагревается от низкой солнечной активности до 20-30 ˚С и, через трехходовой клапан низкой солнечной активности 3 направляется в компактный аккумулятор 6 теплоты на фазовом переходе, где накапливается тепловая энергия. При необходимости, с помощью теплового насоса 7, путем прокачивания теплоносителя посредством циркуляционного насоса первичного контура 8, температурный потенциал теплоносителя поднимается до 35-45 ˚С и он, через трехходовой клапан 10 теплового насоса, прокачиваемый циркуляционным насосом вторичного контура 9, направляется в буферную емкость отопления 11, либо же потенциал теплоносителя поднимается до 55-60 ˚С и теплоноситель через трехходовой клапан 10 теплового насоса направляется в бойлер 12 горячего водоснабжения.

В межсезонье, в тот период, когда солнечная активность невысокая, а потребность в отоплении и горячем водоснабжении имеется, в стандартных схемах сложно эффективно использовать солнечную энергию из-за низкой температуры нагрева теплоносителя (15-25 ˚С). Однако в таком режиме солнечный коллектор 1 работает значительную часть отопительного периода. Таким образом, имеется смысл полезно использовать эту низкопотенциальную энергию. Для осуществления этого можно накапливать энергию при низком потенциале и использовать по мере необходимости, трансформируя ее в тепловом насосе до необходимой температуры. Бойлерное аккумулирование в виде явной теплоты в данном случае не эффективно, так как при низкой температуре теплоносителя (воды) и больших потребностях в отоплении габариты аккумулятора будут слишком велики. Поэтому в данном случае аккумулирование наиболее целесообразно в компактных аккумуляторах 6 теплоты на фазовом переходе при температуре 20-30 ˚С. В качестве теплоаккумулирующего материала может быть использованы, например: гептодекан С17Н36 (температура фазового перехода 21,7 ˚С) или нонадекан С19Н40 (температура фазового перехода 28 ˚С). Например при отоплении дома площадью 100 м2 в Ростовской области, средние тепловые потери составят 10 кВт (при расчетной температуре наружного воздух минус 22 ˚С), а в межсезонье – около 3,5 кВт. Для отопления с такой мощностью и температурой 35 ˚С, в течение 12 часов темного времени суток потребуется бойлерный накопитель 2500 л, тогда как компактный аккумулятор теплоты на фазовом переходе с правильно подобранным теплоаккумулирующим материалов будет в объеме 300-500 л.

Режим высокой солнечной активности.

В данном режиме работы теплоноситель за счет работы циркуляционного насоса 2, проходит через солнечный коллектор 1 и нагревается от высокой солнечной активности до 60-80 ˚С. Трехходовой клапан низкой солнечной активности 3, трехходовой клапан средней солнечной активности 4 и трехходовой клапан высокой солнечной активности 5 направляют теплоноситель напрямую в бойлер горячего водоснабжения 12, где он используется для подогрева воды для нужд горячего водоснабжения.

Проявление высокой солнечной активности и нагрев теплоносителя до 80 ˚С и более возможен и в ясные дни переходного периода. В данном случае, использование высокопотенциальной тепловой энергии наиболее эффективно для бойлерного хранения и использования в дальнейшем, в основном для нужд горячего водоснабжения. В данном случае плотность энергии выше и в совокупности с невысокой долей потребления тепла на горячее водоснабжение в общем балансе здания, размеры бойлера будут небольшими. Использование высокопотенциальной энергии полученной от солнечного коллектора для отопления нецелесообразно, так как для этого ее потенциал придется уменьшить. Доля высокопотенциальной энергии в общем балансе схемы не велика и наиболее эффективно будет использована для горячего водоснабжения.

Режим средней солнечной активности.

В данном режиме работы теплоноситель, за счет работы циркуляционного насоса 2, проходит через солнечный коллектор 1, нагревается от средней солнечной активности до 35-45 ˚С. Трехходовой клапан низкой солнечной активности 3 и трехходовой клапан средней солнечной активности 4 направляют теплоноситель напрямую в буферную емкость отопления 11, где он используется для нужд отопления потребителя. Среднепотенциальную солнечную энергию, достаточную по температуре для отопления, оптимально направлять непосредственно на отопление. При необходимости горячего водоснабжения, с помощью теплового насоса 7 потенциал теплоносителя поднимается до 55-60 ˚С и теплоноситель через трехходовой клапан теплового насоса 10 направляется в бойлер горячего водоснабжения 12.

Водонагревательная установка с эффективным использованием солнечной энергии, состоящая из солнечного коллектора, соединенного с бойлером горячего водоснабжения через трехходовой клапан средней солнечной активности и трехходовой клапан высокой солнечной активности, теплового насоса, циркуляционного насоса, циркуляционного насоса первичного контура и трехходового клапана, отличающаяся тем, что дополнительно содержит аккумулятор теплоты на фазовом переходе, соединенный с солнечным коллектором через трехходовой клапан низкой солнечной активности и буферную емкость отопления, соединенную через циркуляционный насос вторичного контура с тепловым насосом, а также содержит трехходовой клапан теплового насоса.



 

Похожие патенты:

Изобретение относится к бытовой технике и предназначено для подогрева воздуха в помещении. Заявлено устройство для подогрева воздуха, содержащее корпус осесимметричной формы, внутри которого размещены теплообменные трубы, вентилятор с электродвигателем, закрепленный на входном торце, при этом электродвигатель соединен электрическими проводами с источником электроэнергии, а в качестве источника электроэнергии использован термоэлектрический генератор, содержащий термоэлектрические элементы, зажатые между теплоподводящими и теплоотводящим радиаторами.

Группа изобретений относится к медицинской технике, а именно к средствам экзотермического нагрева тела человека. Экзотермический нагреватель для тела человека содержит основное тело экзотермического нагревателя, который производит тепло посредством реакции окисления и в котором имеющий плоскую форму экзотермический элемент, содержащий окисляющийся металл, электролит, углеродный компонент и воду, покрыт первым покровным листом и вторым покровным листом, причем первый покровный лист представляет собой лист, который является воздухопроницаемым и по существу не ограничивает реакцию окисления, удерживающий воду материал расположен таким образом, что он находится, по меньшей мере, частично в контакте с экзотермическим элементом, и экзотермический нагреватель удовлетворяет условиям, когда (А) разность между внутренней температурой экзотермического элемента и максимальной температурой поверхности основного тела экзотермического нагревателя составляет от 10°C или менее, (B) максимальная температура кожи, получаемая, когда экзотермический нагреватель помещается на кожу человека, составляет от 38°C до 42°C, и (C) соотношение количества (мг/см2⋅10 мин) пара, производимого в течение 10 минут после начала реакции окисления к массе (г/см2) экзотермического элемента принимает значение в диапазоне от 50 до 250.

Изобретение относится к гелиоархитектуре и гелиоэнергетике, в частности к солнечным зданиям со встроенными солнечными энергетическими установками для получения электрической энергии и теплоты.

Изобретение относится к гелиотехническим устройствам, а именно к адаптируемому к положению естественного источника инфракрасного излучения (Солнца) держателю рабочей поверхности солнечного коллектора.

Изобретение относится к области энергетики. Горная автономная воздушно-тяговая установка, содержащая воздуховод, представляющий собой последовательно соединенные сегменты из труб разного диаметра, таким образом, что диаметр труб с каждым соединением постепенно уменьшается от максимального в месте забора воздуха до минимального в месте установки воздушного двигателя, при этом нижняя часть воздуховода помещена в геотермальную емкость, а входное отверстие воздуховода расположено вне геотермальной емкости, причем побудитель воздуха установлен в верхней части воздуховода и выполнен в виде нагнетателя воздуха, состоящего из лопастей, приводимых в движение потоком ветра.

Группа изобретений относится к солнечным коллекторам и способам их изготовления. Корпус (1) для системы концентрации солнечной энергии содержит трубу (2), выполненную с возможностью содержания теплопередающей среды (10) и содержащую первую часть, выполненную с возможностью быть подверженной воздействию солнечного света, и вторую часть, выполненную с возможностью не быть подверженной воздействию солнечного света.

Изобретение относится к солнечной энергетике. Изобретение представляет собой гелиоэнергетическую систему, включающую не менее чем один стационарно установленный модуль параболического солнечного коллектора с опорными элементами либо солнечными батареями на плоских держателях, средствами поворота, солнечными отражателями на дугообразных держателях каркаса и преобразователем солнечного излучения, причем солнечные отражатели либо солнечные батареи на плоских держателях выполнены гибкими в виде продольно расположенных относительно держателей каркаса и параллельно друг другу лент, при этом каркас снабжен приспособлениями для натяжения лент.

Изобретение относится к испарителю для получения пара с помощью магмы вулкана и способу его работы. Испаритель содержит корпус, воронку для отвода осадка, снабженную системой датчиков уровня наполнения, канал подачи воды, канал отвода пара, при этом нижняя часть корпуса, воронка и часть канала подачи воды перед входом в корпус выполнены с возможностью электрического подогрева.

Изобретение относится к гелиотехнике. Концентратор солнечного излучения выполнен в виде тела вращения, внутренняя поверхность которого является отражающей поверхностью, и расположенного под ним приемника излучения.

В предложенной теплогенерирующей системе (1) осуществляется управление избыточной теплоотдачей для увеличения числа мест протекания реакции тепловыделения в ячейках (16) теплогенерирующих элементов, которые генерируют избыточное тепло с помощью реакции тепловыделения, из числа множества ячеек (16) теплогенерирующих элементов, и в результате этого, даже если множество ячеек (16) теплогенерирующих элементов включает ячейку (16) теплогенерирующего элемента, которая не генерирует избыточное тепло вследствие недостаточной реакции тепловыделения, соответствующее количество тепла может быть рекуперировано на выходе путем выполнения компенсации с использованием другой ячейки (16) теплогенерирующего элемента, в которой реакция тепловыделения определенно протекает.

Изобретение относится к способам извлечения петротермальной энергии с последующим применением в системах теплоснабжения и хладоснабжения. Из скважины с температурным градиентом по обсадной трубе теплоноситель подается в подземный котел-теплообменник, нагревается, поднимается по концентрично опущенной в обсадную трубу трубе и передает тепло потребителю при помощи теплового насоса. Затем теплоноситель охлаждается и снова поступает в скважину, цикл повторяется. В теплый период используется для нужд хладоснабжения, включая в работу второй тепловой насос. Для создания подземного котла-теплообменника методом многоступенчатого гидравлического разрыва пласта выполнены смещенные по глубине отверстия в оконечной части обсадной трубы и трубы, концентрично опущенной в обсадную трубу. Для образования подземного котла-теплообменника жидкость для гидравлического разрыва подается сначала по трубе, концентрично опущенной в обсадную трубу для образования трещин, после промывается кислотным раствором для снижения сопротивления движению жидкости в трещинах, а затем по обсадной трубе с удалением промывочной жидкости через трубу, концентрично опущенную в обсадную трубу. Техническим результатом является снижение глубины бурения без потери тепловой мощности. 2 з.п. ф-лы, 1 ил.
Наверх