Способ определения величины выхода термоядерных нейтронов импульсного источника

Изобретение относится к технике измерения ионизирующих излучений. Сущность изобретения заключается в том, что способ определения величины выхода термоядерных нейтронов импульсного источника дополнительно содержит этапы, на которых подсчитывают количество импульсов тока в выбранном временном интервале, градуировку детектора производят непосредственно перед проведением измерений от эталонного импульсного источника, для чего детектор относительно эталонного источника устанавливают на расстоянии, соответствующем его местоположению при проведении измерений с импульсным источником, при этом используют прибор измерения выхода нейтронов с известной погрешностью, который устанавливают на заданном в паспорте расстоянии от эталонного источника, далее неоднократно снимают показания с детектора и этого прибора для достижения относительной погрешности определения фактической чувствительности детектора к нейтронному излучению в реальной геометрии и реальных климатических условиях измерения на уровне не более ±15% при доверительной вероятности Р=0,95, которую учитывают в качестве постоянного коэффициента при определении выхода нейтронов импульсного источника. Технический результат – повышение точности определения выхода нейтронов.

 

Изобретение относится к технике измерения ионизирующих излучений и может быть использовано для определения величины нейтронного выхода с помощью сцинтилляционных детекторов нейтронов с вычисленной непосредственно перед измерениями чувствительностью к нейтронному излучению в реальных условиях и реальной геометрии измерений.

Существует способ определения нейтронного выхода с помощью нейтронных детекторов с предварительной абсолютной и относительной калибровкой детекторов на образцовом изотопном источнике γ-излучения Со-60 [Матвеев В.В., Хазанов Б.И. Приборы для измерений ионизирующих излучений. Изд. 2-е. М.: Атомиздат, с. 30-32, 1972 г.] с дискретным значением энергии квантов, равным в среднем 1,25 МэВ. Существует изотопная установка Эталон-3 с изотопом Со-60 из состава вторичного эталона ВЭТ 8-12-91. На установке с изотопным источником Со-60 возможна калибровка как набора детекторов одного, так и разного типов. Способ состоит в осуществлении регистрации токов с детекторов при воздействии источника излучения, проведении сквозных расчетов процессов, возникающих в результате воздействия излучения на чувствительные элементы детекторов, проведении обработки результатов регистрации и определении коэффициентов относительных чувствительностей детекторов.

Недостатком известного способа является то, что не учитывается реальная геометрия и условия (лабораторные, полевые и др.) проведения эксперимента, что увеличивает погрешность определения величины нейтронного выхода.

Существует способ определения выхода термоядерных нейтронов от нейтронного источника, в частности ядерного реактора, являющийся частью способа определения интегральной и спектральной плотности потока нейтронов по патенту RU 2390800, публик. 27.05.2010. Способ измерения спектральной и интегральной плотности потоков нейтронов заключается в использовании нескольких параллельно включенных детекторов нейтронного излучения, имеющих различные зависимости чувствительности от энергии нейтронов, при этом выходные сигналы этих детекторов обрабатываются совместно с помощью специально обученной нейронной сети, обеспечивая вычислительное восстановление энергетического спектра измеряемого потока нейтронов и вычисление по нему интегральной плотности измеряемого потока нейтронов и его производных характеристик, а сами детекторы подбираются таким образом, чтобы зависимости их чувствительностей от энергии нейтронов совместно перекрывали весь энергетический диапазон измеряемых нейтронных потоков. В частности, способ определения выхода термоядерных нейтронов включает получение выходных сигналов параллельно включенных сцинтилляционных детекторов нейтронного излучения, предварительно откалиброванных от источника γ-излучения с известными характеристиками, для настройки детекторов на требуемую чувствительность к нейтронному излучению. По информации, получаемой от набора детекторов, вычислительно восстанавливают энергетический спектр измеряемого потока нейтронов путем построения нейросетевой математической модели. Если ориентироваться на получение плотности потока в спектральных полосах, соответствующих десятичным интервалам по энергии, то всего в диапазоне энергий от 0,025 эВ до 25 МэВ получается 9 десятичных интервалов. При этом общее количество детекторов может быть и меньше девяти, и больше девяти, т.о. в каждом спектральном интервале может быть как один, так и несколько детекторов. Следовательно, нейронная сеть должна иметь 9 выходов. На каждом выходе должно формироваться значение средней плотности потока нейтронов, попадающих в данный интервал энергий. В идеальном случае должен быть набор из 9 детекторов, каждый из которых имел бы максимум функции сечения реакции с нейтронами от их энергии в соответствующем десятичном интервале. Важно, чтобы спектральные характеристики чувствительности отобранных детекторов были разными и в сумме перекрывали бы все указанные интервалы.

Недостатком этого способа является использование сложной схемы измерения, включающей использование нейтронных детекторов, работающих на разных физических принципах, а также сложной математической обработки для восстановления всего диапазона нейтронного спектра, что понижает точность измерений и оперативность получения конечных результатов.

Известен способ определения величины выхода термоядерных нейтронов импульсного источника (патент RU 2065181, публик. 10.08.1996), выбранный в качестве наиболее близкого аналога. Способ включает регистрацию нейтронов и сопутствующего γ-излучения с помощью сцинтилляционного детектора с органическим кристаллом, получение выходных сигналов в виде импульсов тока с амплитудой; пропорциональной энергии нейтронов и γ-квантов, при этом измеряют спектры без разделения нейтронного и γ-излучений при размещении кристалла под углами 0° и 90° по отношению к направлению на источник, соответствующими максимальному и минимальному значениям эффекта угловой анизотропии световыхода кристалла. Производят дискриминацию всех сигналов с амплитудами меньшими, чем от протонов отдачи с максимальной энергией Ер=14 МэВ путем выставления уровня дискриминации такой, чтобы загрузка анализатора производилась сигналами с амплитудами, соответствующими протонам отдачи с максимальной энергией Ер=14 МэВ (окончание плато спектра). Вычитая спектр Nmin при размещении кристалла под углом 0° (эффект угловой анизотропии кристалла минимальный) из спектра Nmax при размещении кристалла под углом 90° (эффект угловой анизотропии кристалла максимальный) по отношению к направлению на источник соответственно получают колоколообразный пик, площадь которого пропорциональна флюенсу термоядерных нейтронов. Постоянный коэффициент пропорциональности, зависящий от геометрии размещения, размеров и анизотропных свойств кристалла, определяют при калибровке и градуировке спектрометра, последнюю осуществляют в реальной геометрии. Постоянный коэффициент учитывают при определении выхода термоядерных нейтронов импульсного источника. Ближайший аналог направлен на повышение точности и оперативности получения конечных результатов, упрощение процесса измерений выхода нейтронов с энергией En=14 МэВ.

Недостаток ближайшего аналога заключается в том, что повышение точности измерений достигается только за счет принудительного ограничения энергетического спектра путем выставления определенного уровня дискриминации многоканального амплитудного анализатора, что ведет к ограничению его функциональных возможностей. Кроме того, способ невозможно применить при малых величинах нейтронного выхода (103-107 нейтр./имп.),

Техническим результатом заявляемого изобретения является обеспечение точности измерений с погрешностью не более ±20% при доверительной вероятности Р=0,95 в расширенном диапазоне нейтронного выхода (103-109 нейтр./имп.) и энергетического спектра.

Указанный технический результат достигается за счет того, что в способе определения величины выхода термоядерных нейтронов импульсного источника, основанном на регистрации нейтронов и сопутствующего γ-излучения и включающем измерение их спектров без разделения путем получения сигналов в виде импульсов тока с амплитудой, пропорциональной энергии нейтронов и γ-квантов с помощью сцинтилляционного детектора, который предварительно калибруют на определенную чувствительность к нейтронному излучению и градуируют в реальной геометрии, в результате чего получают постоянный коэффициент, который учитывают при вычислении выхода нейтронов, новым является то, что для определения выхода нейтронов подсчитывают количество импульсов тока в выбранном временном интервале, а градуировку детектора производят непосредственно перед проведением измерений от импульсного источника, используя эталонный источник нейтронного излучения с известной величиной выхода нейтронов, а также длительностью импульса, и энергетическим спектром, соответствующими длительности и спектру импульсного источника, для чего детектор относительно эталонного источника устанавливают на расстоянии, соответствующем его местоположению при проведении измерений с импульсным источником, при этом используют прибор измерения выхода нейтронов с известной погрешностью, который устанавливают на заданном в паспорте расстоянии от эталонного источника, далее неоднократно снимают показания с детектора и этого прибора для достижения относительной погрешности определения фактической чувствительности детектора к нейтронному излучению в реальной геометрии и реальных климатических условиях измерения на уровне не более ±15% при доверительной вероятности Р=0,95, которую учитывают в качестве постоянного коэффициента при определении выхода нейтронов импульсного источника.

Подсчет количества импульсов тока в выбранном временном интервале, который составляет сотни микросекунд, для определения выхода нейтронов позволяет сместить во времени регистрируемые импульсы от γ- и нейтронного излучения, что повышает точность определения выхода нейтронов в расширенном диапазоне энергетического спектра, а использование для этого специально разработанного программно-математического обеспечения позволяет исключить влияние субъективного фактора на результаты обработки.

Осуществление градуировки детектора непосредственно перед проведением измерений с исследуемым источником, позволяет отградуировать детектор в реальных климатических и других (лабораторных, полевых и т.д.) условиях, что обеспечивает заявленную точность измерений.

Применение эталонного источника нейтронного излучения с известной величиной выхода нейтронов, а также длительностью импульса и энергетическим спектром, соответствующими длительности и спектру импульсного источника, и использование прибора измерения выхода нейтронов с известной погрешностью, который устанавливают на заданном в паспорте расстоянии от эталонного источника, позволяют настроить детектор на энергетический спектр нейтронов, ожидаемый от импульсного источника, и вносят определяющий вклад в уменьшение погрешности определения чувствительности детектора.

Установка детектора относительно эталонного источника на расстояний, соответствующем его местоположению при проведении измерений с исследуемым источником, позволяет учесть реальную геометрию проведения измерений.

Неоднократное снятие показаний с детектора и прибора измерения выхода нейтронов для определения фактической чувствительности детектора к нейтронному излучению в реальной геометрии и реальных климатических условиях измерения, позволяет произвести градуировку детектора по чувствительности с наименьшей погрешностью (относительной погрешностью на уровне не более ±15% при доверительной вероятности Р=0,95) в расширенном диапазоне нейтронного выхода.

Учет фактической чувствительности детектора в качестве постоянного коэффициента при определении выхода нейтронов импульсного источника позволяет определить выход термоядерных нейтронов с погрешностью не более ±20% при доверительной вероятности Р=0,95.

Примером конкретного выполнения заявляемого решения может служить способ определения величины нейтронного выхода термоядерных нейтронов от генератора нейтронного импульса, использующего явление плазменного фокуса (ПФ).

Способ осуществляют с помощью следующих систем:

- четыре параллельно включенных сцинтилляционных детекторов излучения (СДИ), каждый их которых состоит из сцинтиллятора (полистирол с добавками n-терфинила и РОРОР) и ФЭУ, обеспечивающего электрические импульсы, находящиеся в известной связи с интенсивностью света, вырабатываемого сцинтиллятором;

- устройство для калибровки СДИ на заданную чувствительность к нейтронному излучению, включающее источник γ-излучения закрытый с радионуклидом Со60, который устанавливается на расстоянии 1 м, высоковольтный блок питания, кабельную линию связи, по которой детектор соединен с цифровым осциллографом, управляющий компьютер со специальным программно-математическим обеспечением;

- эталонный источник нейтронного излучения - ТГИ187 с известным выходом нейтронов, длительностью импульса и энергетическим спектром, соответствующими спектру и длительности импульсного источника (включает две сменные камеры для генерации нейтронов разных энергий);

- прибор измерения выхода нейтронов с известной погрешностью - ТПИВН61 с относительной погрешностью не более ±10% при доверительной вероятности Р=0,95 с учетом настройки от эталонного источника нейтронов ТСНГ-2.

Способ определения выхода термоядерных нейтронов импульсного источника заключается в следующем.

После размещения СДИ на определенном расстоянии от источника излучения Со60 осуществляют настройку цифрового осциллографа на требуемый диапазон регистрации (напряжение, мВ; время, мкс). Настройку осуществляют с помощью специально созданного программного математического обеспечения ПЭВМ. При облучении сцинтиллятора СДИ регистрируют число электрических импульсов в единицу времени при подаче напряжения разной величины на ФЭУ СДИ. Диапазон подаваемого напряжения составил 1,3-1,8 кВ при неизменном числе фотонов (активность радионуклида Со60 в источнике 4,3*107 Бк). Электрические импульсы по кабельной линии поступают на цифровой осциллограф, запуск которого на сбор информации, считывание информации и ее последующая математическая обработка осуществляется в автоматизированном режиме с помощью ПЭВМ, программно-математическое обеспечение которого позволяет это воспроизвести. Было получено 200 осциллограмм за требуемый интервал времени (сотни микросекунд). При указанном диапазоне напряжений было зарегистрировано от 3 до 8 электрических импульсов. Было выбрано напряжение 1,5 кВ, которое соответствует 5 импульсам за требуемый интервал времени. Такому количеству импульсов соответствует требуемая чувствительность детектора к нейтронному излучению с отклонением не более ±10%.

После калибровки детекторов осуществляют их градуировку от эталонного источника нейтронного излучения ТГИ187 (с энергией нейтронов, соответствующей энергии нейтронов генератора ПФ). Для чего детекторы относительно источника устанавливают на расстояниях, соответствующих их местоположению при проведении измерений с импульсным источником - 1, 2, 3, 4 т. Прибор измерения выхода нейтронов ТПИВН61 устанавливают на известном фиксированном расстоянии 33 см от эталонного источника, далее 15 раз подряд запускают ТГИ187 и снимают показания с детекторов и этого прибора для достижения относительной погрешности определения фактической чувствительности детекторов к нейтронному излучению в реальной геометрии и реальных климатических условиях измерения на уровне не более ±15% при доверительной вероятности Р=0,95.

Устанавливают генератор ПФ на место ТГИ187 и получают выходные сигналы параллельно включенных сцинтилляционных детекторов нейтронного излучения при срабатывании данного генератора. Далее в автоматизированном режиме осуществляют математическую обработку выходных сигналов с получением истинного количества импульсов, зарегистрированных на осциллограмме за сотни микросекунд, что позволяет с учетом фактической чувствительности детекторов вычислить нейтронный выход с погрешностью не более ±20% при доверительной вероятности Р=0,95.

Т.о. применение заявляемого способа, включающего автоматизированную градуировку измерительных каналов, позволяет учесть реальную геометрию и условия проведения измерений при определении величины нейтронного выхода, достичь заявленной погрешности и исключить влияние субъективного фактора на результаты обработки.

Способ определения величины выхода термоядерных нейтронов импульсного источника, основанный на регистрации нейтронов и сопутствующего γ-излучения и включающий измерение их спектров без разделения путем получения сигналов в виде импульсов тока с амплитудой, пропорциональной энергии нейтронов и γ-квантов, с помощью сцинтилляционного детектора, который предварительно калибруют на определенную чувствительность к нейтронному излучению и градуируют в реальной геометрии, в результате чего получают постоянный коэффициент, который учитывают при вычислении выхода нейтронов, отличающийся тем, что для определения выхода нейтронов подсчитывают количество импульсов тока в выбранном временном интервале, а градуировку детектора производят непосредственно перед проведением измерений от импульсного источника, используя эталонный источник нейтронного излучения с известной величиной выхода нейтронов, а также длительностью импульса и энергетическим спектром, соответствующими длительности и спектру импульсного источника, для чего детектор относительно эталонного источника устанавливают на расстоянии, соответствующем его местоположению при проведении измерений с импульсным источником, при этом используют прибор измерения выхода нейтронов с известной погрешностью, который устанавливают на заданном в паспорте расстоянии от эталонного источника, далее неоднократно снимают показания с детектора и этого прибора для достижения относительной погрешности определения фактической чувствительности детектора к нейтронному излучению в реальной геометрии и реальных климатических условиях измерения на уровне не более ±15% при доверительной вероятности Р=0,95, которую учитывают в качестве постоянного коэффициента при определении выхода нейтронов импульсного источника.



 

Похожие патенты:

Изобретение относится к области ядерного приборостроения и может быть использовано при радиационном мониторинге в качестве портативного средства поиска и определения направления на источник фотонного излучения по двум угловым координатам в телесном угле 2π стерадиан.

Изобретение относится к области поиска и обнаружения источников ионизирующего излучения и предназначается для поиска точечных источников гамма-излучения. Способ определения местоположения точечного источника гамма-излучения на местности содержит этапы, на которых осуществляют ведение радиационной разведки с измерением мощности дозы гамма-излучения, при этом проводят измерения в точках, лежащих на окружности с радиусом R, внутри которой находится источник, определяют точки с наименьшим Pmin и наибольшим Рmах значениями мощности дозы, при этом считают, что искомый источник находится на линии, проходящей через эти точки, рассчитывают расстояние от точки с наибольшим Рmах значением мощности дозы до источника гамма-излучения по формуле Технический результат – повышение оперативности поиска и снижение дозовых нагрузок на персонал, задействованный в проведении работ.

Изобретение относится к области химической дозиметрии и может использоваться при косвенном определении поглощенной дозы гамма-излучения. Способ определения поглощенной дозы гамма-излучения заключается в измерении величины светопропускания дозиметрической жидкости от волнового числа и расчете поглощенной дозы гамма-излучения по установленной градуировочной зависимости величины светопропускания при постоянном волновом числе, при этом в качестве дозиметрической жидкости используют двухфазную систему, состоящую из дихлорбензола и элементарной серы в соотношении компонентов, соответствующем насыщению серы в растворителе, мас.%: дихлорбензол 98,0-99,0, элементарная сера 1,0-2,0.

Изобретение относится к области измерительной техники, а именно к способам корректировки и стабилизации измерительных параметров сцинтилляционных детекторов ионизирующих излучений (СДИ).

Группа изобретений относится к позитронно-эмиссионной томографии (PET). Детектор фотонов содержит массив датчиков из расположенных в плоскости оптических датчиков, четыре идентичных сцинтилляционных кристаллических стержня, первый слой со светоделительным участком, второй слой со светоделительным участком, блок обработки сигналов, соединенный с массивом датчиков, выполненный с возможностью оценивать оценочную глубину взаимодействия одного из четырех идентичных сцинтилляционных кристаллических стержней по детектированному событию на основании соотношения воспринимаемой люминесценции двух из четырех идентичных сцинтилляционных кристаллических стержней, расположенных диагонально друг к другу и обращенных к одному из четырех идентичных сцинтилляционных кристаллических стержней.

Группа изобретений относится к детектору излучения. Детектор излучения содержит преобразующий элемент для преобразования падающего излучения в электрические сигналы; схему считывания для обработки упомянутых электрических сигналов; нагревательное устройство, отделенное от схемы считывания, для нагревания преобразующего элемента, причем нагревательное устройство содержит элемент Пельтье, и причем источник тепла упомянутого элемента Пельтье ориентирован к преобразующему элементу, а его теплоотвод ориентирован к схеме считывания.

Изобретение относится к медицине, а именно к радиологии и медицинской биофизике, и может быть использовано для реконструктивного дозиметрического контроля в протонной терапии сканирующим пучком.

Группа изобретений относится к области скважинных инструментов. Устройство для обнаружения гамма-излучения в стволе скважины содержит сцинтилляционный кристалл и трубчатый фотоэлектронный умножитель, размещенные в общем кожухе или в индивидуальных кожухах.

Изобретение относится к области регистрации фотонного излучения и касается блока детекторов для измерения фотонного излучения. Блок детекторов содержит первую разделенную вакуумированным межэлектродным промежутком систему двух электродов, один из которых предназначен для соединения с источником электрического напряжения питания, и вторую разделенную газонаполненным межэлектродным промежутком систему двух электродов, один из которых предназначен для соединения с источником электрического напряжения питания.

Изобретение относится к технологии получения поликристаллических сцинтилляционных материалов, применяемых в различных областях науки и техники, важнейшими из которых являются: медицинские и промышленные томографы, системы таможенного контроля и контроля распространения радиоактивных материалов, приборы дозиметрического контроля, различные детекторы для научных исследований, применяемые в физике высоких энергий и астрофизике, оборудование для геофизических исследований для нефте- и газоразведки.
Наверх