Способ получения углеродного материала

Изобретение может быть использовано при изготовлении конденсаторов и суперконденсаторов. Сначала исходный углеродный материал с высокой удельной поверхностью - не менее 300 м2/г пропитывают по влагоемкости концентрированным раствором щелочи или соды, или соли щелочного металла. Затем проводят термохимическую активацию в присутствии воздуха при температуре 60-300 °С в течение 2-50 ч до воспламенения материала, т.е. резкого неконтролируемого разогрева. Активированный материал быстро изолируют от атмосферы воздуха, охлаждают до комнатной температуры, отмывают дистиллированной водой или разбавленными растворами кислот в объемном соотношении 0,3-30 и сушат при температуре не выше 100 °С для исключения повторного самовозгорания. Полученный углеродный материал характеризуется высокой псевдоэлектроемкостью. 3 з.п. ф-лы, 2 ил., 2 табл., 2 пр.

 

Изобретение относится к области получения углеродных материалов... Современные углеродные материалы для конденсаторов и суперконденсаторов выдвигают требования к углеродным носителям, связанным с высокой электропроводностью и стабильностью к окислительно-восстановительным процессам в условиях циклирования вольт-амперной зарядке/разрядке материалов.

Наиболее подходящими и широко используемыми материалами в этой области являются углеродные материалы торговых марок Vulcan, Ketjen black, Black Pearls. Однако цены на эти углеродные материалы весьма высоки. В основном это связано с методом их получения, т.к. все перечисленные углеродные материалы являются сажами, т.е. продуктами термического разложения высокочистого углеводородного сырья. Также вносит вклад их ограниченное производство и узкопрофильное применение.

Аналогами изобретения по способу применения являются углеродные сажи, описанные в изобретениях US 9,793,555, US 9,790,076, US 9,742,010, US 9,793,576, US 9,793,550, US 9,786,953, US 9,775,235, US 9,724,940 и многие другие. Однако из-за принципиально отличающегося сырья для получения углеродного материала имеет смысл рассматривать другие аналоги, чтобы подчеркнуть принципиальную новизну метода активации углеродного материала.

В изобретении RU 2,467,798 углеродный материал модифицируют гетероатомными частицами металлов, проводя пропитку из растворов предшественников, что связано с данным изобретением только наличием углеродного носителя.

В работе RU 2,625,671 проводили гидротермическую обработку углеродного материала без добавления активирующего компонента - щелочи, - при температурах значительно ниже, что не позволяло значительно улучшить активацию материала, но приводило к его гранулированию.

В изобретении RU 2,556,011 модификацию углеродного материала проводили солей фосфатов нестехиометрического состава, что не соотносится с данным изобретением.

Способ, приведенный в RU 2,436,625, предлагает термическую активацию древесного предшественника в инертной атмосфере при температуре 300-800°С с последующим применением щелочи с термообработкой при 800°С и отмывкой полученного материала после охлаждения. Ключевым отличием в данном случае является применение инертной атмосферы и завышенных значений температуры.

Однако наиболее технически близкий способ активации углеродного материала описан в RU 2,583,026, С01В 31/02, 27.04.2010, где получение активированного угля из предшественника происходит при температуре не ниже 700°С в присутствие щелочей в инертной атмосфере с последующей термообработкой в присутствие СО2.

Изобретение решает задачу упрощения получения углеродных материалов с высокой и стабильной электроемкостью..

Технический результат - высокая псевдоэлектроемкость, предлагаемый способ не требует таких высоких температур и специфических условий обработки.

Предложен способ получения углеродного материала, характеризующийся тем, что исходный высокоповерхностный углеродный материал подвергают умеренной термохимической активации путем пропитки по влагоемкости концентрированным раствором щелочи или соды, иди соли щелочного металла, с последующей сушкой углеродного материала в присутствии воздуха, охлаждением в инертной атмосфере, вымыванием щелочи, повторной сушкой активированного материала для удаления избытков воды.

Сушку проводят при температуре 60-300°С в течение 2-50 ч или до воспламенения материала, т.е. резкого неконтролируемого разогрева, с последующей быстрой изоляцией углеродного материала от атмосферы воздуха и его охлаждением до комнатной температуры.

Раствор щелочи или соды, или соли щелочного металла после активации удаляют дистиллированной водой или разбавленными растворами кислот в объемном соотношении 0,3-30.

Повторную сушку активированного материала проводят при температуре не выше 100°С для исключения повторного самовозгорания.

Суть изобретения заключается в специальной термохимической обработке промышленно доступных углей, включая каменные активированные угли российского производства. Для метода активации необходим уголь с удельной поверхностью не менее 300 м2/г. Уголь пропитывают по влагоемкости концентрированным раствором щелочи (включая соду и прочие соли щелочных металлов), сушат на воздухе при температурах 60-300°С в течении 2-50 ч или до начала самовоспламенения, затем изолируют от окружающей среды или помещают в инертную атмосферу с последующим охлаждением. В процессе термической сушки происходит активация поверхности угля в привитием стабильных активных групп хинон-гидрохиноновых на поверхности углеродного материала, которые и отвечают за высокую псевдоемкость. Заключительная стадия приготовления заключается в вымывании щелочи из пор углеродного материала дистиллированной водой (или более чистым аналогом) в количестве 0,3-30 объемов от объема углеродного материала и заключительной сушкой от воды при умеренной термической обработке до 100°С. В процессе активации щелочь является одновременно катализатором процесса активации, снижая активационный барьер для окисления поверхности, и стабилизатором, поверхностных групп, образуя соли с продуктами окисления. Таким образом, удается значительно снизить стоимость углеродных материалов для электрохимической области.

Сущность изобретения иллюстрируется следующими примерами и. Фиг.

Фиг 1 - Циклические вольтамперограммы угля БАУ-А.

Фиг. 2 - РФЭС C1s спектр углеродного материала АГМ с различными способами активации поверхности.

Пример 1

Коммерческий березовый уголь БАУ-А (пр-во ОАО «Сорбент») пропитали концентрированным раствором щелочи (15 мас. %) по влагоемкости. Затем уголь загрузили в противень и поместили в вентилируемый сушильный шкаф при температуре 180°С на 4 ч. После того, как произошло возгорание угля, противень извлекли из шкафа и заизолировали, чтобы не происходил обмен воздухом с окружающей средой, обмотав противень алюминиевой фольгой. После остывания углеродный материал извлекли и промыли дистиллированной водой для очистки от остатков щелочи, высушили при сравнительно низкой температуре 100°С в течении 24 ч. Чистый уголь испытали в вольт-амперном цикле.

Эксперимент проводили в трехэлектродной ячейке с жидким электролитом в атмосфере аргона. В качестве электролита использовали 0,1 М HClO4. Электродом сравнения служил обратимый водородный электрод, вспомогательный электрод был представлен платиновой фольгой, а рабочий электрод представлял собой стеклоуглеродный стержень с нанесенным на него образцом. Образец наносился из суспензии, приготовленной следующим образом: к навеске образца добавляли 1 мл раствора изопропилового спирта с водой в соотношении 3:2 об. и расчетное количество иономерного связующего Нафион (5 мас. %. раствор в воде). Контроль потенциалов в эксперименте обеспечивался с помощью потенциостата Autolab и программы Nova.

Сравнение исходного и активированного угля представлены в таблице 1. Вольамперограммы приведены на Фиг. 1, из которых следует резкий рост пика на 0,6 В (гидрохинон-хинон переход) на прямой ветви циклирования.

Пример 2

Коммерческий каменный уголь ATM (пр-во ОАО «Сорбент») пропитали по влагоемкости 15 мас. % раствором щелочи. Пропитанный уголь разделили на 3 равные доли. Первую часть поместили в противень и просушили в сушильном шкафу при 60°С в течении 24 ч. Вторую часть поместили в противень и просушили в сушильном шкафу при температуре 100°С в течении 20 ч. Последнюю часть также поместили в противень и сушили в сушильном шкафу при 200°С в течении 6 ч до самовозгорания, затем последний противень быстро извлекли и обмотали алюминиевой фольгой для изоляции от атмосферы воздуха и подождали, пока все объемы остынут до комнатной температуры. Затем щелочь вымыли дистиллированной водой в объемном соотношении 1:10 для каждой фракции и высушили угли при 60°С. Углеродные материалы изучили методом РФЭС на фотоэлектронном спектрометре фирмы SPECS Surface Nano Analysis GmbH (Германия).

Спектрометр был оснащен полусферическим анализатором PHOIBOS-150-MCD-9 и источником рентгеновского характеристического излучения XR-50M с двойным Al/Ag анодом. Для записи спектров использовали немонохроматическое излучение Al Кα (h*=1486.61 эВ). Для учета эффекта зарядки образцов использовали спектр C1s углерода, входящего в состав носителя (Есв=284.80 эВ). Относительные концентрации элементов в зоне анализа определялись на основании интегральных интенсивностей РФЭС линий с учетом сечения фотоионизации соответствующих термов. Для детального анализа использовали разложение спектров на индивидуальные составляющие. Соответственно, после вычитания фона по методу Ширли, экспериментальная кривая раскладывалась на ряд линий, соответствующих фотоэмиссии электронов из атомов в различном химическом окружении. Обработка данных производилась с помощью пакета программ CasaXPS. Форма пиков C1s аппроксимировалась симметричной функцией, полученной умножением функций Гаусса и Лоренца. Форма пиков Fe2p и S2p аппроксимировалась асимметричной функцией LF на основе функций Лоренца и Гаусса.

Графические результаты приведены на Фиг. 2. Сравнительный анализ поверхностных окисленных групп углерода к общему количеству углерода в угле приведен в таблице 2..

Из полученных данным отчетливо видно, что термическая активация в присутствии щелочи позволяет получать активированные углерод-кислородные группы по предложенной методике, соответствующие хинон-гидрохиноновому типу связей, что делает данный способ эффективным для активации любых углеродных материалов.

1. Способ получения углеродного материала, характеризующийся тем, что исходный углеродный материал с высокой удельной поверхностью - не менее 300 м2/г пропитывают по влагоемкости концентрированным раствором щелочи или соды, или соли щелочного металла, после чего проводят термохимическую активацию в присутствии воздуха при температуре 60-300°С в течение 2-50 ч до воспламенения материала, т.е. резкого неконтролируемого разогрева, затем активированный материал быстро изолируют от атмосферы воздуха, охлаждают, отмывают и сушат для удаления избытка воды.

2. Способ по п. 1, отличающийся тем, что активированный материал охлаждают до комнатной температуры.

3. Способ по п. 1, отличающийся тем, что для отмывки используют дистиллированную воду или разбавленные растворы кислот в объемном оотношении 0,3-30.

4. Способ по п. 1, отличающийся тем, что сушку проводят при температуре не выше 100°С для исключения повторного самовозгорания.



 

Похожие патенты:

Изобретение относится к области исследования и анализа материалов и может быть использовано в инфракрасной спектроскопии. Образцы фуллерена C60 для съемки спектров пропускания инфракрасного излучения изготавливают механическим втиранием порошка C60 в полированную поверхность бромида калия.

Изобретение относится к теплоэнергетической промышленности, частично использующей альтернативные источники топлива. Теплогазогенераторная установка выполнена в виде единого устройства, имеющего многоступенчатый корпус, выполненный в виде двух вложенных друг в друга труб с зазором, образующим технологический корпус, разделенный на изолированные ступени технологического цилиндра по числу стадий процесса приготовления топливной смеси, и огневую камеру образованную емкостью внутренней трубы.

Изобретение относится к химическим источникам тока. Химический перезаряжаемый источник тока содержит в поперечном сечении чередующиеся слои катода, сепаратора и плоского анода.

Изобретение относится к области электротехнической промышленности и нанотехнологии, а именно к электропроводным тонкослойным плёнкам из восстановленного оксида графена и к способу их получения.

Изобретение относится к вакуумной установке пиролиза метана. Установка содержит вакуумную рабочую камеру, соединенную линией откачки с механическим вакуумным насосом.

Изобретение относится к неорганической химии, а именно к получению соединений с углеродом, и может быть использовано для получения порошка на основе карбида бора в металлургии, машиностроении.
Изобретение относится к нанотехнологии, электротехнике, электронике, энергетике и биомедицине и может быть использовано при изготовлении смазочных и абразивных материалов, модификаторов поверхности, а также изолирующих материалов для полупроводников и схемных плат.
Изобретение относится к способу получения активного угля на основе полимерных композиционных материалов и может быть использовано в жидкофазных и газофазных сорбционных технологиях.

Изобретение предназначено для химической и металлургической промышленности и может быть использовано при изготовлении подшипников, уплотнений и облицовочных плит.

Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования.

Изобретение относится к наноэлектронике, спинтронике, автомобильной промышленности, биомедицине, аэрокосмическому сектору и может быть использовано для среднесерийного производства графенсодержащих композитных материалов и логических компонентов приборов. На подложку из высокоориентированного пиролитического графита наносят каталитический слой металла VIII группы 4-го периода толщиной 16 нм. Затем проводят отжиг в условиях сверхвысокого вакуума при температурах от 300 до 350 °С в течение не менее 15 минут. Полученный в условиях низких температур графен анализируют методом рентгеновской фотоэлектронной спектроскопии (РФЭС). Кристаллическую структуру графена исследуют методами дифракции медленных электронов (ДМЭ) и сканирующей электронной микроскопии (СЭМ). При использовании никеля в качестве металла VIII группы 4-го периода отжиг проводят при 300 °С, а при использовании кобальта – при 350 °С. Изобретение позволяет уменьшить количество разнонаправленных доменов графена на единицу площади в 1,5 раза. 2 з.п. ф-лы, 5 ил., 2 пр.

Изобретение относится к области химии, а именно к способам переработки углеродсодержащего сырья, в том числе отходов, с производством ценных химических продуктов, а также энергии. Способ включает окисление исходного сырья, которое осуществляют за счет контактирования исходного сырья с окисленным расплавом. Расплав представляет собой расплав, содержащий высшие оксиды каталитически активных металлов. В результате образуются продукты окисления исходного сырья и восстановленный расплав. Восстановленный расплав представляет собой расплав, содержащий низшие оксиды каталитически активных металлов. Проводят окислительную регенерацию восстановленного расплава, которую осуществляют за счет контактирования восстановленного расплава с газообразным окислителем, с обратным образованием окисленного расплава и газообразных продуктов окислительной регенерации. Окисление исходного сырья и окислительную регенерацию восстановленного расплава осуществляют в отдельных реакционных зонах и обеспечивают циркуляцию окисленного и восстановленного расплавов между этими зонами. Окислительную регенерацию восстановленного расплава осуществляют в двух отдельных окислительных реакционных зонах, в одной окислительной реакционной зоне ведут окислительную регенерацию восстановленного расплава водяным паром с получением водорода и в другой окислительной реакционной зоне ведут окислительную регенерацию восстановленного расплава кислородсодержащим газом, в том числе воздухом, с получением тепловой энергии. Технический результат: непрерывность и высокая производительность процесса; высокая технологическая гибкость и энергетическая сбалансированность процесса; повышенная надежность и безопасность способа. 13 з.п. ф-лы, 1 ил.
Наверх