Система очистки жидкости

Изобретение относится к системам очистки жидкости с применением фильтрующих мембран, предназначенным для очистки или обессоливания жидкости, преимущественно воды, в том числе питьевой воды, технологических растворов, сточных вод, напитков и других жидкостей в бытовых или промышленных условиях. Система очистки жидкости включает линию (1) подачи исходной жидкости, блок (2) очистки жидкости, подключенный к линии (1) подачи исходной жидкости, линию (3) очищенной жидкости, подключенную к выходу очищенной жидкости блока (2) очистки жидкости, на которой установлен насос (13), и линию (4) сброса дренажной жидкости, подключенную к выходу дренажной жидкости блока (2) очистки жидкости. Блок (2) для очистки жидкости включает, по меньшей мере, две мембраны, вставленные в корпуса и находящиеся в сообщении между собой через два коллектора. Каждый коллектор сформирован из, по меньшей мере, двух элементов, сообщающихся между собой через ниппели и соединенных друг с другом с помощью средства крепления. Система может содержать линию рециркуляции (14). Технический результат: возможность адаптации системы очистки воды к различным условиям в процессе эксплуатации при одновременном повышении эргономичности и надежности системы. 4 з.п. ф-лы, 8 ил.

 

Изобретение относится к системам очистки жидкости с применением фильтрующих мембран, предназначенным для очистки или обессоливания жидкости, преимущественно воды, из различных источников, в том числе питьевой воды, технологических растворов, сточных вод, напитков и других жидкостей в бытовых или промышленных условиях, на предприятиях общественного питания, на дачных и садовых участках.

Из уровня техники известна система очистки жидкости по патенту US 7850847 (МПК B01D 63/06, приоритет 16.08.2004, заявитель Peter Grodon Brown). Система очистки жидкости состоит из линии подачи исходной жидкости, подключенной к входу исходной жидкости блока очистки жидкости, линии сброса дренажной жидкости, подключенной к выходу дренажной жидкости блока очистки жидкости, и линии очищенной жидкости, подключенной к выходу очищенной жидкости блока очистки жидкости. Блок очистки жидкости, в свою очередь, состоит из двух коллекторов, между которыми установлены, по меньшей мере, две обратноосмотические мембраны, взятые в корпус. В одном из коллекторов выполнены каналы, соединяющие мембраны между собой, предназначенные для исходной и обрабатываемой жидкости. В другом коллекторе выполнен канал, в который поступает очищенная жидкость со всех мембран. Мембраны соединены между собой последовательно.

Система очистки жидкости работает следующим образом. Исходная жидкость от источника через линию подачи исходной жидкости поступает в блок очистки жидкости. Исходная жидкость поступает в первую мембрану. Обработанная жидкость после первой мембраны поступает через канал, выполненный в коллекторе, во вторую мембрану, и так далее до последней мембраны. Дренажная жидкость последней мембраны выводится из системы по линии сброса дренажной жидкости. Очищенная жидкость со всех мембран поступает в канал, выполненный во втором коллекторе, и далее по линии очищенной жидкости подается потребителю.

Система по патенту US 7850847 имеет недостатки. Соединение мембран в системе только последовательное, это значит, что первая мембрана испытывает минимальную нагрузку, а последняя мембрана испытывает максимальную нагрузку от загрязнений. А значит, что срок службы последней мембраны истечет раньше, чем срок службы всех остальных мембран. Поскольку конструкция системы не позволяет адаптировать ее под разные типы мембран, то при замене мембраны с истекшим сроком службы, она должна быть заменена на идентичную. Кроме этого, в коллекторах устанавливается всегда фиксированное количество мембран, таким образом, коллекторы должны быть изготовлены под каждую новую систему индивидуально с подгонкой по размерам. В случае необходимости установить еще одну мембрану, коллекторы должны быть изготовлены заново.

Из уровня техники известна система очистки жидкости по патенту US 5194149 (МПК B01D 27/08, приоритет 29.09.1989, заявитель Memtec Limited). Система очистки жидкости состоит из линии подачи исходной жидкости, подключенной к входу исходной жидкости блока очистки жидкости, линии сброса дренажной жидкости, подключенной к выходу дренажной жидкости блока очистки жидкости, и линии очищенной жидкости, подключенной к выходу очищенной жидкости блока очистки жидкости. Блок очистки жидкости состоит из двух коллекторов - верхнего и нижнего, которые состоят из элементов. Между каждой парой элементов от верхнего коллектора и от нижнего коллектора установлена ультрафильтрационная мембрана, взятая в корпус. Элементы соединены между собой с помощью болтовых соединений, при этом части сквозных каналов каждого элемента образуют один общий сквозной канал. Также блоки могут быть соединены в трехмерную конструкцию за счет соединительной угловой детали, которая также является частью коллектора. Каналы внутри соединительного углового элемента выполнены так, что исходная жидкость переходит из одного блока в другой, при этом мембраны одного блока работают последовательно, а мембраны соседних блоков работают параллельно.

Система по патенту US 5194149 работает следующим образом. Исходная жидкость от источника по линии подачи исходной жидкости поступает в блок очистки жидкости и распределяется между всеми мембранами одного блока. Далее очищенная жидкость поступает в канал для очищенной жидкости, а дренажная жидкость - в канал для дренажной жидкости. В случае, если в системе предусмотрены несколько рядов блоков, то соединение между ними последовательное. Дренажная жидкость первого блока будет исходной жидкостью для второго блока, и так далее. Очищенная жидкость поступает на потребление по линии очищенной жидкости, а дренажная жидкость выводится из системы по линии дренажной жидкости в дренаж.

Система по патенту US 5194149 имеет недостатки. Элементы блоков соединены между собой болтовыми соединениям. От перепадов давления и вибрации такие соединения могут ослабнуть, что приведет к расстыковке и разгерметизации соединений между элементами. Кроме этого, в указанной системе невозможно последовательное и последовательно-параллельное соединение мембран в пределах одного блока. В системе по патенту US 5194149 могут быть использованы только ультрафильтрационные мембраны, поэтому в пределах указанной системы нельзя увеличить степень очистки жидкости.

Из уровня техники известна система очистки жидкости, по патенту US 3734297 (МПК B01d 31/00, приоритет 02.02.1972, заявитель Universal Water Corporation), выбранная заявителем в качестве наиболее близкого аналога. Система очистки жидкости состоит из линии подачи исходной жидкости, подключенной к входу исходной жидкости блока очистки жидкости, линии сброса дренажной жидкости, подключенной к выходу дренажной жидкости модуля очистки жидкости, и линии очищенной жидкости, подключенной к выходу очищенной жидкости. Блок очистки жидкости состоит из двух кожухов, в каждый из которых помещен коллектор, между которыми расположены, по меньшей мере, две, обратноосмотические мембраны, помещенные в корпуса. В одном из коллекторов выполнен вход для исходной жидкости, подключенный к линии подачи исходной жидкости, и может быть выполнен выход для дренажной жидкости, подключенный к линии сброса дренажной жидкости. Во втором коллекторе выполнены отверстия для выхода очищенной жидкости из обратноосмотических мембран, подключенных к линии очищенной жидкости, и может быть выполнен выход для дренажной жидкости.

В указанных коллекторах выполнены выемки, рассчитанные, по меньше мере, на две обратноосмотические мембраны, взятые в корпуса. Ширина каждый выемки равна диаметру одной обратноосмотической мембраны в корпусе. Длина выемки зависит от количества обратноосмотических мембран в корпусе в блоке очистки жидкости, которое будет в нее вставлено. В каждой выемке второго коллектора размещен переходник. Переходники соединены между собой, образуя канал для очищенной жидкости.

Каждый корпус с обратноосмотической мембраной одним концом вставлен в выемку первого коллектора, а вторым - в выемку второго коллектора. Выходы очищенной жидкости из мембран герметично соединены с каналами для очищенной жидкости, сформированными из переходников, помещенными в выемки, которые выполнены во втором коллекторе.

Коллектора могут быть с разными выемками. Выбор определяется соединением мембран.

Например, для последовательного соединения в первом коллекторе выполнена выемка длиной в один корпус обратноосмотической мембраны - первая выемка, во втором коллекторе - выемка длиной в два корпуса - вторая выемка, в первой трубе через расстояние, равное длине второй выемки, выполнена выемка длиной в два корпуса - третья выемка, верхняя часть которой расположена на одном уровне с нижней частью второй выемки. Далее последовательность расположения выемок повторяется.

Система очистки жидкости по патенту US 3734297 работает следующим образом.

При последовательном соединении мембран исходная жидкость от источника по линии подачи исходной жидкости поступает на вход первой обратноосмотической мембраны. Очищенная жидкость через переходник поступает на линию очищенной жидкости. Дренажная жидкость первой мембраны по выемкам поступает на вход исходной жидкости второй мембраны и т.д. Дренажная жидкость из последней мембраны выводится из системы по линии сброса дренажа. Очищенная жидкость через переходники поступает на линию очищенной жидкости и подается на потребление.

В патенте US 3734297 представлены также параллельное и последовательно-параллельное соединение.

Система по патенту US 3734297 имеет существенный недостаток - коллектора с выемками должны быть изготовлены заранее и попарно, поскольку каждая пара коллекторов обеспечивает только один вид соединения мембран между собой. Если изменится количество мембран, то коллектора надо будет изготавливать заново, подгоняя выемки и стенки под требуемый тип соединения. Таким образом, система не может быть адаптирована к изменениям условий потребления в процессе эксплуатации, поскольку конструкция системы не позволяет адаптировать ее под разные типа мембран, то вышедшая из строя мембрана должна быть заменена на точно такую же.

Задачей изобретения и достигаемым за счет него техническим результатом, является разработка новой системы очистки жидкости с возможностью ее адаптации к различным условиям в процессе эксплуатации при одновременном повышении эргономичности и надежности системы.

Поставленная задача и требуемый технический результат достигаются тем, Система очистки жидкости, включающая линию подачи исходной жидкости, блок очистки жидкости, подключенный к линии подачи исходной жидкости, линию очищенной жидкости, подключенную к выходу очищенной жидкости блока очистки жидкости и линию сброса дренажной жидкости, подключенную с выходу дренажной жидкости блока очистки жидкости, при этом блок для очистки жидкости, включает, по меньшей мере две мембраны, вставленные в корпуса, и находящиеся в сообщении между собой через два коллектора выполнена так, что коллектор сформирован из, по меньшей мере, двух элементов, сообщающихся между собой через ниппели и соединенных друг с другом с помощью средства крепления, при этом соединение коллекторов с переходниками нерезьбовое, при этом ниппели снабжены стопорами, выполненными в виде хомутов, также система дополнительно может содержать линию рециркуляции, подключенную к линии дренажной жидкости и к линии подачи исходной жидкости перед входом в блок очистки жидкости и блок очистки жидкости дополнительно может содержать соединительную деталь и пустой корпус мембраны.

Краткое описание чертежей

На фигуре 1 представлен пример системы очистки жидкости.

На фигуре 2 представлены примеры последовательной (а) и параллельной (b) схем работы мембран.

На фигуре 3 представлены примеры последовательно-параллельной (с) схемы работы мембран и схемы работы мембран с рециркуляцией (d).

На фигуре 4 представлен угловой фиттинг.

На фигуре 5 представлена соединительная деталь.

На фигуре 6 представлен ниппель.

Система очистки жидкости включает линию 1 подачи исходной жидкости, блок очистки жидкости 2, подключенный к линии 1 подачи исходной жидкости, на которой установлен насос 13, линию 3 очищенной жидкости и линию 4 сброса дренажной жидкости (фигура 1). Дополнительно система может содержать линию 14 рециркуляции. В этом случае линия рециркуляции 14 подключена к линии 4 сброса дренажной жидкости и к линии 1 подачи исходной жидкости перед блоком очистки жидкости 2.

Блок очистки жидкости 2 состоит, по меньшей мере, из двух мембран 5, находящихся в сообщении между собой через, по меньшей мере, два коллектора. Каждый коллектор сформирован из элементов, между которыми помещены мембраны 5. Элементы соединены между собой, по меньшей мере, одним средством крепления (на фигурах не обозначены) и, по меньшей мере, одним ниппелем 8. Внутренне пространство элементов разделено на полости. Внутри элемента может быть выполнено две полости - элемент 6 или три полости - элемент 7. В элементах 6 и 7 одна из полостей предназначена только для очищенной жидкости. Назначение одной или двух других полостей варьируется в зависимости от того, как работает блок очистки жидкости 2. Между собой элементы 6 и 7 сообщаются через ниппели 8, которые соединяют полости соседних элементов. Каждый ниппель 8 снабжен хомутом 9 и дополнительно может быть уплотнен кольцами 10. Хомут 9 обеспечивает герметичность и стабильность конструкции коллектора при перепадах давления и вибрации (фигура 4). В отличие от заявляемого изобретения, в ближайшем аналоге при жестком соединении коллектор не имеет степеней свободы, поэтому механизма компенсации внешних воздействий отсутствует.

В блоке очистки жидкости 2 мембраны 5 могут быть соединены между собой последовательно, параллельно и последовательно-параллельно.

В заявляемом изобретении под термином исходная жидкость понимаем -жидкость, подаваемую по линии 1 исходной жидкости в блок очистки жидкости 2, обрабатываемая жидкость - жидкость, циркулирующую в блоке очистки жидкости 2, дренажная жидкость - жидкость, которая по линии 4 дренажной жидкости выводится из системы, это может быть концентрат с обратноосмотических мембран, промывочная жидкость, которая образуется при промывке половолоконных мембран, либо это частично непрофильтрованная жидкость, протекающая вдоль корпусов мембран блока очистки жидкости 2, очищенная жидкость - жидкость, прошедшая очистку в мембранах 5, и по линии 3 очищенной жидкости выводится из системы.

Мембраны 5, используемые в блоке 2 могут быть двух типов - половолоконные и обратноосмотические. При этом блок 2 может состоять как из мембран одного типа, так и из мембран обоих типов. Кроме этого, на половолоконные мембраны 5 могут быть дополнительно с намывным слоем сорбента.

Средство крепления (на фигурах не представлено), соединяющее каждую пару элементов 6 между собой выполнено в виде основной детали и, по меньшей мере, одной защелки, предпочтительно, двух защелок. Основная деталь может быть выполнена П-образной или U-образной формы.

На фигуре 2а представлено последовательное соединение мембран, когда оба коллектора блока очистки жидкости 2 сформированы из элементов 6. Полость исходной жидкости элемента 6.1-1 подключена к линии 1 подачи исходной жидкости. Полость обрабатываемой жидкости элемента 6.1-8 через ниппель 8 соединена с полостью исходной жидкости элемента 6.1-7. Полость обрабатываемой жидкости элемента 6.1-2 через ниппель 8 соединена с полостью исходной жидкости элемента 6.1-3. Полость обрабатываемой жидкости элемента 6.1-6 соединена с полостью исходной жидкости 6.1-5. Полости дренажной жидкости элементов 6.1-1, 6.1-2, 6.1-3, 6.1-4 соединены друг с другом через ниппели 8 и предназначены для сброса дренажной жидкости после последней мембраны 5. Все полости для очищенной жидкости элементов 6.1-5, 6.1-6, 6.1-7, 6.1-8 соединены через ниппели 8, а полость для очищенной жидкости первого элемента 6.1-8 подключена к линии 3 очищенной жидкости. И далее аналогично, в зависимости от количества мембран в блоке очистки жидкости 2.

На фигуре 2 (b) представлена параллельная работа мембран. В этом случае оба коллектора сформированы из элементов 6. Все полости для исходной жидкости нижних элементов 6.2-1, 6.2-2, 6.2-3, 6.2-4 соединены между собой через ниппели 8, а полость элемента 6.2-1 подключена к линии 1 подачи исходной жидкости. Все полости для очищенной жидкости элементов 6.2-5, 6.2-6, 6.2-7, 6.2-8 соединены через ниппели 8, а полость для очищенной жидкости элемента 6.2-8 подключена к линии 4 очищенной жидкости. Все полости для дренажной жидкости элементов 6.2-5, 6.2-6, 6.2-7, 6.2-8 соединены между собой через ниппели 8, а полость для дренажной жидкости элемента 6.2-8 подключена к линии 4 сброса дренажной жидкости. И далее аналогично, в зависимости от количества мембран в блоке очистки жидкости 2.

На фигуре 3 (с) представлен пример последовательно-параллельного соединения мембран. В этом случае верхний коллектор сформирован из элементов 7, а нижний - из элементов 6. Полости обрабатываемой жидкости элементов 7.3-8 и 7.3-7 соединены друг с другом через ниппели 8. Полость исходной жидкости элемента 7.3-6 соединена через ниппель 8 с полостью обрабатываемой жидкости элемента 7.3-7. Полость для исходной жидкости элемента 6.3-1 подключена к линии 1 подачи исходной жидкости и через ниппель 8 соединена с полостью для исходной жидкости элемента 6.3-2. Полость для обрабатываемой жидкости элемента 6.3-3, через ниппель 8 соединена с полостью для исходной жидкости элемента 6.3-4. Третьи полости элементов 7.3-5, 7.3-6, 7.3-7, 7.3-8, соединены друг с другом через ниппели 8 и предназначены для сброса дренажной жидкости после последней 5 по линии 4 сброса дренажной жидкости.

На фигуре 3 (d) представлен пример системы с рециркуляцией при последовательно-параллельном соединении мембран 5. Один коллектор сформирован из элементов 7, а второй - из элементов 6. Полость для исходной жидкости элемента 6.4-1, подключена к линии 1 подачи исходной жидкости типа 1 и через ниппель 8 соединена с полостью для исходной жидкости элемента 6.4-2. Полости обрабатываемой жидкости элементов 7.4-8 и 7.4-7 соединены друг с другом через ниппели 8. Полость исходной жидкости элемента 7.4-6 через ниппель 8 соединена с полостью обрабатываемой жидкости элемента 7.4-7. Полость обрабатываемой жидкости элемента 7.4-3 соединена с полостью исходной жидкости элемента 6.4-4. Полости всех верхних элементов 7.4-5, 7.4-6, 7.4-7, 7.4-8 соединены друг с другом через ниппели 8 и предназначены для сброса дренажной жидкости после последней мембраны 5 по линии 4 сброса дренажной жидкости. В варианте, представленном на фигуре 3 (d) предусмотрена линия рециркуляции 10, которая подключена к выходу дренажной жидкости из третьей полости элемента 7.4-8 и к входу исходной жидкости в полость для исходной жидкости элемента 7.4-1.

Также в системе могут быть использованы мембраны разного размера и производительности. Это возможно за счет средства соединения, состоящего из двух деталей: углового фитинга 11 (фигура 4) и соединительной детали 12. Соединительная деталь 12 выполнена с тремя полостями и служит для надстройки блока очистки жидкости 2 (фигура 4). В одном корпусе в зависимости от его длины может быть установлен один или два мембранных элемента. Дополнительно в блоке очистки жидкости 2 может быть установлен, по меньшей мере, один пустой корпус (на фигурах не представлен), в котором находится исходная жидкость. Такой корпус может быть использован в качестве гидроаккумулятора, при перепадах давления в системе.

В рамках отличительных признаков система работает следующим образом. По линии 1 подачи исходной жидкости исходная жидкость от источника поступает в модуль очистки жидкости 2. Очищенная жидкость из модуля поступает на линию 3 очищенной жидкости, и дренажная жидкость - на линию 4 дренажной жидкости (фигура 1). Если система дополнительно содержит линию рециркуляции 14, то дренажная жидкость по ней поступает на вход блока очистки жидкости 2. Внутри блока 2 последовательность работы мембран может быть различной.

При последовательном соединении мембран (фигура 2а) исходная жидкость входит в полость для исходной жидкости элемента 6.1-1. Очищенная жидкость поступает в полость для очищенной жидкости первого верхнего элемента 6.1-1. Обрабатываемая жидкость через полость обрабатываемой жидкости элемента 6.1-8 проходит через ниппель 8 в полость исходной жидкости элемента 6.1-7. Далее происходит очистка жидкости во второй мембране 5. Очищенная жидкость поступает в полость для очищенной жидкости элемента 6.1-7. Обрабатываемая жидкость через полость для обрабатываемой жидкости элемента 6.1-2 через ниппель 8 поступает в полость для исходной жидкости элемента 6.1-3. Последовательность повторяется. Таким образом, обрабатываемая жидкость, первой мембраны 5 служит исходной жидкостью для второй мембраны 5 и т.д. Очищенная жидкость со всех мембран проходит через все полости для очищенной жидкости элементов 6.1-5, 6.1-6, 6.1-7, 6.1-8 и через линию 3 подачи очищенной жидкости подается потребителю. Дренажная жидкость выходит из последней мембраны и через полость для дренажной жидкости элемента 6.1-4 через ниппели 8 проходит через все полости для дренажной жидкости всех нижних элементов и через линию 4 сброса дренажной жидкости выводится из системы.

При параллельном соединении мембран 5 (фигура 2b) исходная жидкость поступает и равномерно распределяется между всеми полостями для исходной жидкости элементов 6.2-1, 6.2-2, 6.2-3, 6.2-4. Происходит очистка жидкости. Обрабатываемая жидкость выходит из каждой мембраны и поступает в полости для обрабатываемой жидкости каждого элемента 6.2-5, 6.2-6, 6.2-7, 6.2-8, при этом все полости соединены между собой через ниппели 8 и образуют один общий канал. Очищенная жидкость от мембран поступает в полости для очищенной жидкости элементов 6.2-5, 6.2-6, 6.2-7, 6.2-8, при этом все полости для очищенной жидкости объединены через ниппели 8 в один общий канал, через который очищенная жидкость поступает на линию 3 очищенной жидкости. Дренажная жидкость по линии 4 сброса дренажа выводится из системы.

При последовательно-параллельном соединении мембран (фигура 3с) исходная жидкость по линии 1 подачи исходной жидкости поступает одновременно в полости для исходной жидкости элементов 6.3-1 и 6.3-2. Происходит очистка жидкости. Обрабатываемая жидкость из элементов 7.3-8 и 7.3-7 проходит в полость для исходной жидкости элемента 7.3-6. Обрабатываемая жидкость из полости для обрабатываемой жидкости третьего элемента 6.3-3 через ниппель 8 проходит в полость исходной жидкости четвертого элемента 6.3-4. Дренажная жидкость из полости обрабатываемой жидкости элемента 7.3-5 проходит через третьи полости всех элементов 7.3-5, 7.3-6, 7.3-7, 7.3-8 и по линии 4 сброса дренажной жидкости, подключенной к третьей полости элемента 7.3-8, выводится из системы. Очищенная жидкость со всех мембран проходит через все полости для очищенной жидкости элементов 7.3-5, 7.3-6, 7.3-7, 7.3-8 и подается потребителю.

При последовательно-параллельном соединении мембран с рециркуляцией (фигура 3d) исходная жидкость поступает и равномерно распределяется между полостями для исходной жидкости элементов 6.4-1 и 6.4-2. Обрабатываемая жидкость поступает в полости для обрабатываемой жидкости элементов 7.4-8 и 7.4-7 и через соединительный ниппель 8 проходит в полость для исходной жидкости элемента 7.4-6. Обрабатываемая жидкость выходит из полости для обрабатываемой жидкости элемента 6.4-3 и через ниппель 8 поступает в полость для исходной жидкости элемента 6.4-4. Дренажная жидкость через полость для дренажной жидкости элемента 7.4-5 через ниппели 8 проходит все полости для дренажной жидкости элементов 7.4-5, 7.4-6, 7.4-7, 7.4-8 и по линии 14 рециркуляции через насос 13 поступает на вход в блок очистки жидкости 2. После нескольких циклов работы системы полученная дренажная жидкость выводится из системы по линии 4 сброса дренажной жидкости.

За счет того, что блок очистки жидкости состоит из отдельных элементов и соединительных деталей, его геометрию можно менять, и система может быть установлена как горизонтально, так и вертикально.

В отличие от ближайшего аналога в заявляемой конструкции благодаря элементам двух типов может быть легко изменена конфигурация блока очистки жидкости, и система может быть быстро адаптирована под разные условия и установлена в различных помещениях. Кроме этого, за счет конструкции ниппелей, снабженных хомутами, соединения внутри блока очистки жидкости сохраняют герметичность при перепадах давления и вибрации. Дополнительно компенсация вибрации обеспечивается за счет того, что блок очистки жидкости выполнен не из металла, а из пластика. Также в случае выхода из строя мембраны одного типа, она может быть изменена на мембрану другого за счет средства соединения. Также в процессе эксплуатации одна из мембран может быть убрана, добавлена или заменена на мембрану другого типа.

В настоящем описании изобретения представлен предпочтительный вариант осуществления изобретения. В нем могут быть сделаны изменения, в пределах заявляемой формулы, что дает возможность его широкого использования.

1. Система очистки жидкости, включающая линию подачи исходной жидкости, блок очистки жидкости, подключенный к линии подачи исходной жидкости, линию очищенной жидкости, подключенную к выходу очищенной жидкости блока очистки жидкости, и линию сброса дренажной жидкости, подключенную к выходу дренажной жидкости блока очистки жидкости, при этом блок для очистки жидкости включает, по меньшей мере, две мембраны, вставленные в корпуса и находящиеся в сообщении между собой через два коллектора, отличающаяся тем, что каждый коллектор сформирован, по меньшей мере, из двух элементов, сообщающихся между собой через ниппели и соединенных друг с другом с помощью средства крепления.

2. Система очистки жидкости по п. 1, отличающаяся тем, что соединение коллекторов с переходниками нерезьбовое, при этом ниппели снабжены стопорами, выполненными в виде хомутов.

3. Система очистки жидкости по п. 1, отличающаяся тем, что дополнительно может содержать линию рециркуляции, подключенную к линии дренажной жидкости и к линии подачи исходной жидкости перед входом в блок очистки жидкости.

4. Система очистки жидкости по п. 1, отличающаяся тем, что блок очистки жидкости дополнительно может содержать соединительную деталь.

5. Система очистки жидкости по п. 1, отличающаяся тем, что блок очистки жидкости дополнительно может содержать пустой корпус мембраны.



 

Похожие патенты:

Изобретение относится к биореактору для очистки воды. Биореактор содержит емкость по меньшей мере с одним биореакторным отсеком (1a-1c), содержащим несущую среду, на поверхности которой может расти биопленка, средства подачи воды в отсек (1a-1c) из первого продольного конца отсека, средства отвода, расположенные на втором противоположном продольном конце отсека (1a-1c), для отведения обработанной воды из отсека (1a-1c), трубопроводные средства (7, 17) для подачи реакционного газа в отсек, трубопроводные средства (7), расположенные на боковой поверхности резервуара, рядом с наружной стенкой (9), для перемешивания несущей среды и воды, подвергаемой очистке, путем вращательного движения внутри отсека.
Предложен способ электрохимической активации катализаторных сеток из сплавов платиновых металлов путем электрохимического осаждения платины на сетку для каталитического окисления аммиака, включающий в себя поляризацию сетки анодным током, последующую поляризацию сетки катодным током, где предварительно проводят обжиг сетки, поляризацию сетки осуществляют с использованием электролита при температуре 15 до 50 °C с содержанием платины от 0,30 до 0,65 г/л при прокачке электролита; анодную поляризацию сетки проводят током плотностью от 0,29 до 0,49 мА/см2 в течение от 20 до 30 мин, катодную поляризацию сетки проводят током плотностью от 0,25 до 0,36 мА/см2 в течение от 30 до 65 мин, при этом во время поляризации осуществляют вращение сетки.

Изобретение относится к гранулированным полимерам и их использованию для удаления оксоанионов из водных растворов. Предложены гранулированные полимеры на основе функционализированного кватернизированным диэтилентриамином полиакрилата для удаления оксоанионов хрома (VI), где полиакрилатные гранулированные полимеры получены на основе фракции акрилового мономера, составляющей 70 масс.

Изобретение может быть использовано в сельском хозяйстве для стимуляции роста растений, в ветеринарии и медицине. Для получения экологически чистого водного раствора пероксида водорода реактор заполняют водой.

Изобретение относится к химической промышленности, в частности к способу получения регента, используемого для очистки загрязненных сред, например очистки осадков сточных вод различных химических и пищевых предприятий, в том числе сред, содержащих радиоактивные загрязнения. Техническим результатом изобретения является повышение степени очистки загрязненных средств.

Изобретение может быть использовано для очистки сточных вод. Очистка сточных вод от фосфатов осуществляется в биореакторе последовательно-периодического действия типа SBR в циклических условиях.

Изобретение относится к области медицины, ветеринарии и гигиены, а именно к способам обработки питьевой и технической воды, а также дезинфекции объектов водоснабжения и канализации. Приготовление дезинфицирующего средства на основе ионов серебра, осуществляют путем химической реакции при одновременном растворении в дистиллированной воде при комнатной температуре композиции из порошков лимонной кислоты, оксида серебра и пероксида водорода с концентрацией ионов серебра в растворе дезинфицирующего средства после растворения - 200±20 мг/л.

Предложен способ ведения водно-химического режима и регенерации баромембранной водоподготовительной установки с применением унифицированной коррекционно-отмывочной композиции, включающей блоки ультрафильтрации, дожимные и/или основные блоки обратного осмоса, с применением унифицированной коррекционно-отмывочной композиции, содержащей коагулянт FeCl3, NaClO (раствор с массовой долей 50%), Na2S2O5 (раствор с массовой долей 10%), H2SO4 (раствор с массовой долей 92%), NaOH (раствор с массовой долей 42%), Na5P3O10, трилон Б, лимонную кислоту техническую, антискалянт Экотрит® UNI 1, включающий предварительную очистку исходной воды и химические промывки кислотными и щелочными моющими средствами, где в качестве предварительной очистки питательной воды систем ультрафильтрации и обратного осмоса используется коагуляция хлорным железом (FeCl3); для предупреждения образования растворимых форм железа и отложений органических соединений на поверхности мембраны pH исходной воды поддерживается на уровне 8,2-9,0; в качестве кислотного моющего средства систем ультрафильтрации и обратного осмоса используется водный раствор лимонной кислоты (2200 мг/дм3) с температурой 35-40 °С, подкисленный серной кислотой (630 мг/дм3) до pH = 2,0; в качестве щелочного моющего средства систем ультрафильтрации используется водный раствор гипохлорита натрия (100 мг/дм3) с температурой 30-35 °С, подщелоченный натриевой щелочью (400 мг/дм3) до pH = 12,0; в качестве ингибитора отложения солей используется антискалянт Экотрит® UNI 1, не содержащий фосфаты.

Изобретение относится к химической промышленности и охране окружающей среды и может быть использовано для очистки сточных вод химических предприятий от ртути. Гранулированный активированный уголь обрабатывают модифицирующим раствором, обеспечивающим получение на его поверхности активного компонента - сульфида марганца (II), в две стадии.

Изобретение может быть использовано для очистки и обеззараживания воды. Устройство для очистки и обеззараживания воды содержит корпус 1, снабженный крышкой 2 с уступами на ее нижней поверхности, установленные на ее внутренней поверхности ультрафиолетовые светодиоды 3, излучатели ультразвука 4, отстойник 5, выполненный в форме полой полусферы, обращенной центром вниз, выходной патрубок 6, установленный в крышке 2, вертикально установленную в корпусе 1 перфорированную трубку 7, установленный на трубке дефлектор 8, выполненный в форме логарифмической спирали, установленную на дефлекторе 8 дном вниз тарелку 9 с перфорированными краями, наружный диаметр которой равен внутреннему диаметру корпуса 1, фильтрующий элемент 10, выполненный в форме цилиндра, а также патрубок подачи воды 11.

Изобретение относится к модулю разделительной мембраны, эффективность которого не ухудшается даже при контакте с биологическим компонентом, таким как кровь, который может использоваться в течение длительного времени, который обладает превосходной эффективностью удаления влаги и который выделяет меньше элюатов.
Наверх