Способ оперативного определения жизненного состояния посевов озимой пшеницы

Изобретение относится к сельскому хозяйству. Способ оперативного определения жизненного состояния посевов озимой пшеницы включает измерение электросопротивлений растительной ткани, причем электросопротивления растительной ткани измеряются возле узла кущения на двух частотах и определяют коэффициент жизненного состояния как отношение электросопротивления растительной ткани, измеренного на низкой частоте 10 Гц или 1000 Гц, к электросопротивлению растительной ткани, измеренному на высокой частоте 500 Гц или 10000 Гц, при их соотношении соответственно 1/50 или 1/10. Изобретение позволяет оперативно определить жизненное состояние посевов озимых культур непосредственно в полевых условиях. 5 ил., 1 пр.

 

Изобретение относится к сельскому хозяйству и предназначено для оперативного контроля состояния посевов озимых культур пшеницы.

Известен способ определения жизнеспособности растительной ткани, включающий измерение электропроводности с помощью электродов и с целью повышения оперативности, точности и воспроизводимости результатов измерения при воздействии на ткань электрическим током, одновременно воздействуют на растительную ткань постоянным током и измеряют электропроводность ткани на переменном токе и по минимальной величине электропроводности судят о жизнеспособности ткани (А.с. 893179, опубл. 30.12.1981, бюл. №48).

Недостатком известного способа является гибель исследуемого растения, а также необходимость двух источников тока: генератора синусоидальных колебаний и источника высокого напряжения.

За прототип выбран способ диагностики повреждений озимых культур низкими отрицательными температурами в зимний период предусматривающий периодический отбор проб растений, измерение электропроводности или электросопротивления тканей узла кущения и оценки степени повреждения по изменению данного показателя. При этом с целью повышения точности диагностики и снижения трудоемкости, после измерения электропроводности или электросопротивления ткани узла кущения подвергают воздействию губительного фактора, повторно измеряют электропроводность или электросопротивление погибших тканей узла кущения. В качестве показателя степени повреждения используют отношение электропроводностей или электросопротивлений тканей, измеренных до и после воздействия губительного фактора, при этом определяемый показатель связан со степенью повреждения обратно пропорциональной зависимостью. (А.с. 1194323, опубл. 30.11.1985, бюл. №44).

Недостатком известного способа является его неоперативность в связи с отбором в поле почвенных монолитов с растениями и последующем их оттаиванием.

Задача, на решение которой направлено изобретение, - создание способа оперативного контроля состояния посевов озимой пшеницы.

Технический результат - оперативное определение жизненного состояния посевов озимых культур непосредственно в полевых условиях.

Технический результат достигается способом оперативного определения жизненного состояния посевов озимой пшеницы, включающий измерение электросопротивлений растительной ткани, при этом электросопротивления растительной ткани измеряются возле узла кущения на двух частотах и определяют коэффициент жизненного состояния как отношение электросопротивления растительной ткани, измеренное на низкой частоте 10 Гц или 1000 Гц к электросопротивлению растительной ткани, измеренному на высокой частоте 500 Гц или 10000 Гц при соответственно их соотношении 1/50 или 1/10.

Существенными признаками, обеспечивающими получение заявленного результата, являются:

- измерение сопротивлений возле узла кущения на двух частотах;

- определение коэффициента жизненного состояния как отношение электросопротивления растительной ткани, измеренное на низкой частоте 10 Гц или 1000 Гц к электросопротивлению растительной ткани, измеренному на высокой частоте 500 Гц или 10000 Гц при соответственно их соотношении 1/50 или 1/10.

Изобретение поясняется графически. На фиг. 1 представлены кривые зависимости коэффициента жизненного состояния в о.е. (по оси ординат) от температуры в °С (по оси абсцисс) для соотношения частот 1/8, на фиг. 2 - соответственно для соотношения частот 1/10, на фиг. 3 - соответственно для соотношения частот 1/50, на фиг. 4 - соответственно для соотношения частот 1/100, на фиг. 5 - соответственно для соотношения частот 1/200.

Сплошной кривой показан коэффициент жизненного состояния заведомо выживших растений (при этом график интерполирован до температуры -15°С), пунктиром - явно погибших растений.

Пример конкретного выполнения.

Измерения сопротивления растительной ткани производились возле узла кущения у озимой пшеницы сортов «Краса Дона», «Виктория 11», «Донской сюрприз» на следующих частотах: 10 Гц, 250 Гц, 500 Гц, 1 кГц, 2 кГц, 4 кГц, 10 кГц в пятикратной повторности при одинаковых условиях заморозки. Замораживание производилось до -15°С, что явно губительно для растения и до -10°С - температуры при которой не происходит критических повреждений тканей при этом измерение сопротивлений производилось через каждые 5°С. Для этого были изготовлены 5 одинаковых зажимов-электродов, подключенных к 5 образцам подопытных растений. Выводы от зажимов-электродов через коммутирующее устройство поочередно подключались к измерителю RLC.

Далее определялся коэффициент жизненного состояния (kc) как отношение электросопротивления растительной ткани, измеренное на низкой частоте (Z), к электросопротивлению растительной ткани, измеренному на высокой частоте (Z):

где: Z - электросопротивление растительной ткани на низкой частоте;

Z - электросопротивление растительной ткани на высокой частоте.

Коэффициент жизненного состояния на разных частотах определялся как для явного погибших растений после заморозки до -15°С, так и заведомо выживших - после заморозки до -10°С.

Коэффициент жизненного состояния определялся на следующих соотношениях низкой частоты к высокой частоте:

- 1/2 (250 Гц/500 Гц; 500 Гц/1 кГц; 1 кГц /2 кГц; 2 кГц /4 кГц);

- 1/2,5 (4 кГц/10 кГц);

- 1/4 (250 Гц/1 кГц; 500 Гц/2 кГц; 1 кГц /4 кГц);

- 1/5 (2 кГц/10 кГц);

- 1/8 (250 Гц/2 кГц; 500 Гц/4 кГц);

- 1/10(1 кГц/10 кГц);

- 1/16 (250 Гц/4 кГц);

- 1/20 (500 Гц/10 кГц);

- 1/25 (10 Гц/250 Гц);

- 1/40 (250 Гц/10 кГц);

- 1/50 (10 Гц/500 Гц);

- 1/100 (10 Гц/1 кГц);

- 1/200 (10 Гц/2 кГц);

- 1/400 (10 Гц/4 кГц);

- 1/1000 (10 Гц/10 кГц).

Как видно из графиков (фиг. 1-5), при соотношении частот менее 1/10 и более 1/100 кривые заведомо выживших и явно погибших растений либо соприкасаются, либо пересекаются, что не позволяет сделать однозначный вывод о жизненном состоянии растения. При соотношении частот в диапазоне от 1/10 до 1/100, при значениях коэффициента жизненного состояния выше значений кривой заведомо выживших растений, позволяет отнести исследуемое растение к живым, соответственно, при значениях коэффициента жизненного состояния ниже значений кривой явно погибших растений, позволяет отнести исследуемое растение к погибшим. При значениях коэффициента жизненного состояния в зоне между кривыми -растение имеет значительные повреждения.

Таким образом, способ оперативного определения жизненного состояния посевов озимой пшеницы, включающий измерение электросопротивлений растительной ткани, при этом электросопротивления растительной ткани измеряются возле узла кущения на двух частотах и определяют коэффициент жизненного состояния как отношение электросопротивления растительной ткани, измеренное на низкой частоте 10 Гц или 1000 Гц к электросопротивлению растительной ткани, измеренному на высокой частоте 500 Гц или 10000 Гц при соответственно их соотношении 1/50 или 1/10, обеспечивает оперативное определение жизненного состояния посевов озимых культур непосредственно в полевых условиях.

Способ оперативного определения жизненного состояния посевов озимой пшеницы, включающий измерение электросопротивлений растительной ткани, отличающийся тем, что электросопротивления растительной ткани измеряют возле узла кущения на двух частотах и определяют коэффициент жизненного состояния как отношение электросопротивления растительной ткани, измеренного на низкой частоте 10 Гц или 1000 Гц, к электросопротивлению растительной ткани, измеренному на высокой частоте 500 Гц или 10000 Гц, при их соотношении соответственно 1/50 или 1/10.



 

Похожие патенты:

Изобретение относится к области измерительной техники, в частности к устройствам и способам выявления примесей в трансмиссионном масле и определения степени его загрязненности. Предложен способ оперативного контроля качества трансмиссионного масла, заключающийся в том, что наличие металлических частиц износа узлов трансмиссии в исследуемом масле фиксируется планарной катушкой Теслы, при этом индуктивность планарной катушки Теслы изменяется в зависимости от количества металлических частиц в трансмиссионном масле.

Изобретение относится к способу и устройству измерения влажности материалов и предназначено для непрерывного измерения абсолютной влажности сыпучего материала, транспортируемого на конвейерной ленте. Способ динамического измерения абсолютной влажности потока сыпучего материала заключается в том, что в потоке сыпучего материала формируют измерительную базу, для этого в заданном объеме разделяют исходный поток сыпучего материала на два равнонаправленных потока, в пределах заданной точности, равных друг другу по габаритным размерам, которые предварительно определяют экспериментальным путем исходя из условия обеспечения наилучшей гидродинамики обтекания измерительной базы сыпучим материалом и обеспечения ее максимальной чувствительности к влажности, после чего на границе раздела полученных равнонаправленных потоков создают электрический потенциал заданной величины, а на их внешних границах создают потенциал нулевой величины, затем измеряют электрическую энергию, накапливаемую измерительной базой за счет движения в ней сыпучего материала, по величине измеренной электрической энергии находят абсолютную влажность исходного потока сыпучего материала, при этом используют градуировочную зависимость электрической энергии от абсолютной влажности, которую для данной измерительной базы предварительно получают с помощью одного из наиболее точных стационарных способов измерения абсолютной влажности.

Описаны устройства, системы и способы обнаружения и предоставления предупреждения касательно наличия жидкостного загрязнения в линии пневматической сети и/или пневматическом приборе. Устройство для обнаружения жидкости, обнаруживающее жидкостное загрязнение в пневматической сети и предоставляющее его индикацию, содержит: корпус; электронный датчик содержания влаги, расположенный в указанном корпусе и выполненный с возможностью соединения с пневматической сетью и обнаружения наличия жидкости в указанной пневматической сети; и устройство беспроводной передачи данных, расположенное в указанном корпусе и выполненное с возможностью передачи данных от электронного датчика содержания влаги в узел передачи данных компьютерной сети предприятия.

Группа изобретений относится к области сенсорной техники и нанотехнологий, в частности к изготовлению газовых сенсоров и газоаналитических мультисенсорных линеек хеморезистивного типа. Газовый детектор включает диэлектрическую подложку, расположенные на подложке компланарные полосковые электроды, терморезисторы и нагреватели, при этом по меньшей мере часть поверхности электродов и подложки между электродами покрыты слоем газочувствительного материала, у которого при комнатной температуре изменяется сопротивление под воздействием примесей органических паров или паров воды в окружающем воздухе.

Изобретение относится к твердому электролиту для измерения активности таллия в газовой фазе методом потенциометрического электрохимического анализа, технологии его изготовления, а также для измерения активности таллия в газовой фазе методом потенциометрического электрохимического анализа, которое, в частности, может быть использовано для мониторинга активности в высокотемпературном паре при проведении операции насыщения парами таллия таллиевых высокотемпературных сверхпроводников (Tl ВТСП).

Изобретение относится к научному приборостроению и представляет собой устройство, используемое при проведении ряда физико-химических исследований по изучению микроструктуры и проводимости образцов мембран, для которых критичны внешние условия эксперимента. Заявлено устройство для исследования структурных и транспортных свойств мембран в условиях контролируемой температуры и влажности окружающей среды, представляющее собой герметичную камеру с системой контроля и регулирования температуры и влажности экспериментального образца, состоящую из двух основных частей, составного корпуса и крышки.

Изобретение относится к области исследований свойств пород нефтематеринских сланцевых толщ, а именно – концентрации урана, тория, калия, теплопроводности, температуропроводности, объемной теплоемкости, общего содержания органического углерода горных пород в нефтематеринских сланцевых толщах путем непрерывного профилирования этих свойств на керне.

Изобретение относится к области аналитической химии, а именно к исследованию свойств веществ путем вольтамперометрического определения для оценки антирадикальной активности объектов искусственного и природного происхождения в отношении ОН-радикалов. Способ определения антирадикальной активности веществ включает оценку антирадикальной активности по степени повреждения самоорганизующегося монослоя алкантиолов на индикаторном электроде под воздействием генерируемых ОН-радикалов в присутствии и отсутствие тестируемых веществ путем вольтамперометрической оценки аналитического сигнала в трехэлектродной электрохимической ячейке, где в качестве индикаторного электрода используют ртутно-пленочный электрод, в качестве электрода сравнения хлорид-серебряный электрод, при этом вначале регистрируют вольтамперограммы фонового тока электровосстановления кислорода в постоянно-токовом режиме в диапазоне потенциалов от 0 до -0,6В, индикаторный электрод извлекают из электрохимической ячейки и опускают рабочую поверхность электрода в 1,0 M раствор алкантиола в этаноле на 20 с, затем, используя тиолированный индикаторный электрод, регистрируют вольтамперограммы электровосстановления кислорода, электрод извлекают, помещают в раствор перекиси водорода с концентрацией 0,1 М и облучают в ультрафиолетовом спектре в течение 60 с, после чего на обработанном тиолированном индикаторном электроде проводят регистрацию вольтамперограмм электровосстановления кислорода, индикаторный электрод извлекают из электрохимической ячейки и опускают рабочую поверхность электрода на 20 с в раствор 1,0 M алкантиола в этаноле, электрод возвращают в электрохимическую ячейку и проводят регистрацию вольтамперограмм электровосстановления кислорода, далее извлекают индикаторный тиолированный электрод из электрохимической ячейки, помещают его в раствор перекиси водорода с концентрацией 0,1 М, содержащей раствор анализируемого вещества в исследуемой концентрации, и облучают в течение 60 с в ультрафиолетовом спектре, затем тиолированный индикаторный электрод возвращают в электрохимическую ячейку, проводят регистрацию вольтамперограмм электровосстановления кислорода и определяют коэффициент антирадикальной активности R по формуле: R=1-((Srs-St)/(Sr-St)), где St - площадь под вольтамперограммой электровосстановления кислорода после нанесения монослоя алкантиолов; Sr - площадь под вольтамперограммой электровосстановления кислорода после обработки тиолированного электрода свободными радикалами при отсутствии анализируемого вещества; Srs - площадь под вольтамперограммой электровосстановления кислорода после обработки тиолированного электрода свободными радикалами в присутствии анализируемого вещества.

Изобретение относится к области газового анализа, в частности к полупроводниковым датчикам диоксида азота. Полупроводниковый датчик диоксида азота содержит полупроводниковое основание, нанесенное на непроводящую подложку, при этом полупроводниковое основание выполнено из поликристаллической пленки твердого раствора состава (InAs)0,18(CdTe)0,82.

Изобретение может быть использовано для измерения содержания оксида азота (NO) в воздухе. Согласно изобретению в поток анализируемого воздуха помещают электрохимическую ячейку с полостью, образованной двумя, газоплотно соединенными между собой дисками из кислородпроводящего твердого электролита состава 0,9 ZrO2 + 0,1Y2O3, между которыми имеется капилляр, на электроды, расположенные на противоположных поверхностях одного из дисков, подают напряжение постоянного тока в пределах 0,5 - 1В, с подключением положительного полюса на наружный электрод, посредством чего осуществляют откачку из полости ячейки свободного кислорода и кислорода, полученного после разложения оксида азота, при достижении стационарного состояния, когда количество кислорода, откачанного из полости ячейки, станет равным количеству кислорода, поступающему в эту полость через капилляр, измеряют протекающий через ячейку суммарный предельный ток, соответствующий содержанию кислорода, находящегося в анализируемом воздухе, плюс кислород, образовавшийся от разложения оксида азота, и после вычитания из суммарного предельного тока предельного тока, соответствующего содержанию кислорода в воздухе, определяют концентрацию оксида азота в анализируемом воздухе по предложенной формуле.

Изобретение может быть использовано для оценки функционального состояния растений, в том числе при оптимизации агротехнических условий выращивания, а также для выявления устойчивости растений к различным неблагоприятным факторам среды. Способ включает измерение оптических параметров листьев.
Наверх