Способ прогнозирования тромбозов и кровотечений у критических пациентов с covid-19 в условиях проведения экмо

Изобретение относится к медицине, а именно к анестезиологии, реаниматологии, и может быть использовано для прогнозирования тромбозов и кровотечений у критических пациентов с COVID-19 в условиях проведения экстракорпоральной мембранной оксигенации (ЭКМО). Определяют следующие показатели: объем гепаринизации нефракционированным гепарином (ME/кг/час), активированное частичное тромбопластиновое время (сек), уровень активности антитромбина-III (%), концентрацию оксида азота (мкмоль/л), концентрацию малонового диальдегида (нмоль/мл), концентрацию ангиотензинпревращающего фермента (ACE units), тотальный антиоксидантный статус (ммоль/л). Измеренным показателям присваивают баллы в соответствии с Таблицей 1. Полученные баллы суммируют. При получении значения суммы баллов от 7 до 10 включительно прогнозируют низкую степень риска тромбозов и кровотечений. При сумме баллов от 11 до 16 включительно – среднюю степень. При сумме баллов от 17 до 21 включительно – высокую степень. Способ обеспечивает возможность прогнозирования риска возникновения тромбозов или кровотечений у критических пациентов с COVID-19, подвергающихся процедуре ЭКМО, на основе оценки ряда лабораторных показателей, что позволяет установить вероятность жизнеугрожающих осложнений с целью своевременного осуществления профилактических и лечебных мероприятий. 4 табл., 3 пр.

 

Изобретение относится к области медицины, а именно к анестезиологии-реаниматологии, и может быть использовано для прогнозирования тромбозов и кровотечений у критических пациентов с COVID-19 в условиях ЭКМО.

Из уровня техники известны способы оценки в отдельности: риска тромбозов и риска кровотечений.

В частности, известен способ прогнозирования тромбоэмболических осложнений [патент RU 2621298], при котором определяют фактор роста эндотелия сосудов и на основании полученного значения устанавливают риск тромбоэмболии.

Однако в условиях системного воспалительного ответа, вызванного COVID-19, и механической травмы сосудистой стенки канюлями ЭКМО большого диаметра, данный показатель утрачивает свою значимость.

Из уровня техники также известны шкалы для определения риска кровотечений, такие как ISTH, HAS-BLED [euat.ru], использующие для оценки риска, как правило, клинические показатели без акцента на лабораторные показатели, а также не предполагающие заболевание COVID-19 и наличие ЭКМ.

Наиболее близким к заявляемому решению является способ прогнозирования летального исхода у реанимационных пациентов кардиохирургического профиля [патент RU 2626674], заключающийся в вычислении интегрального индекса совокупности показателей гемостаза у группы пациентов, схожих по тяжести состояния и форме канюляции с пациентами с диагнозом COVID-19, на основании следующих измеренных параметров: K1 - отношение количества тромбоцитов у пациента к значению нижней границы референтного интервала; К2 - отношение активности антитромбина III у пациента к значению нижней границы референтного интервала; К3 - отношение содержания фибриногена у пациента к значению нижней границы референтного интервала; К4 - отношение содержания фибрин-мономера у пациента к референтному значению; К5 - отношение содержания Д-димера у пациента к референтному значению, и при значении интегрального индекса ниже 10,0 прогнозируют летальный исход у реанимационных пациентов кардиохирургического профиля.

Изобретение позволяет прогнозировать летальный исход у реанимационных пациентов кардиохирургического профиля, однако не позволяет оценить риск жизнеугрожающих осложнений у пациентов с новой коронавирусной инфекцией SARS-COV-2.

Технической проблемой является разработка способа прогностической оценки риска осложнений, вызываемых нарушениями в системе гемостаза у критических пациентов с COVID-19, подвергающихся процедуре экстракорпоральной мембранной оксигенации.

Техническим результатом, на достижение которого направлено заявленное изобретение, является возможность прогнозирования риска возникновения тромбозов или кровотечений у критических пациентов с COVID-19, подвергающихся процедуре экстракорпоральной мембранной оксигенации, на основе оценки лабораторных показателей.

Для достижения технического результата определяют следующие показатели в баллах в соответствии с Таблицей 1:

объем гепаринизации нефракционированным гепарином в расчете на массу тела в час (Гепарин),

активированное частичное тромбопластиновое время (АЧТВ),

уровень активности антитромбина-III (АТ3),

концентрацию оксида азота (NOx),

концентрацию малонового диальдегида (MDA),

концентрацию ангиотензинпревращающего фермента (ACE),

тотальный антиоксидантный статус (TAS).

Таблица 1. Балльная оценка показателей свертывающей системы крови и объема антикоагулянтной терапии в соответствии с риском возникновения события осложнения тромботического либо геморрагического характера.

Полученные баллы суммируют, и при получении значения суммы баллов от 7 до 10 включительно прогнозируют низкую степень риска тромбозов и кровотечений, при сумме баллов от 11 до 16 включительно – среднюю степень риска, при сумме баллов от 17 до 21 включительно – высокую степень риска.

Способ позволяет установить вероятность жизнеугрожающих осложнений с целью своевременного осуществления профилактических и лечебных мероприятий.

Технический результат достигается за счет лабораторной диагностики нарушений системы гемостаза, заключающейся в исследовании сыворотки крови. Для оценки риска кровотечений и тромбозов у критических реанимационных пациентов с COVID-19 в условиях ЭКМО использован значимый комплекс показателей, включающий оценку дозировки нефракционированного гепарина в расчете на массу тела, так как данный антикоагулянт является средством выбора и рекомендован к использованию у пациентов с COVID-19 при применении ЭКМО [Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 11(07.05.2021)], позволяющий увеличить точность расчетов; активированное частичное тромбопластиновое время, которое необходимо для оценки состояния свертывающей системы пациентов, получающих антикоагулянтную терапию в условиях ЭКМО; активность антитромбина-III, что необходимо для оценки у пациентов, получающих нефракционированный гепарин, так как антитромбин-III является одним из звеньев механизма действия гепарина, а также сам несет свойства атромбогенного характера; концентрация оксида азота, которая важна для системной оценки состояния эндотелия сосудистой стенки у пациентов с COVID-19; концентрация малонового диальдегида, которая важна для оценки оксидативного стресса у пациентов на ЭКМО; концентрация ангиотензинпревращающего фермента - для оценки функционального состояния АПФ-продуцирующих систем организма, которые при COVID-19 являются органами-мишенями; тотальный антиоксидантный статус, используемый в качестве маркера травмы эндотелия сосудистой стенки, характерной для патогенеза тромбозов и кровотечений у пациентов с COVID-19 в условиях ЭКМО, для оценки возможности антиоксидантной системы организма справляться со свободными радикалами кислорода, продуцируемыми в результате работы контура ЭКМО.

Заявляемый способ отличается простотой в реализации и возможностью мониторинга пациентов с его помощью на протяжении всего периода госпитализации, что позволяет своевременно прогнозировать развитие тромбозов и кровотечений.

Заявляемый способ реализуют следующим образом.

В конкретном варианте осуществления изобретения объем гепаринизации нефракционированным гепарином (МЕ/кг/час) определяют исходя из количества гепарина (число международных единиц), получаемого пациентом в час, в расчете на массу тела; активированное частичное тромбопластиновое время (сек) определяют в плазме крови клоттинговым методом на автоматическом коагулометре «СА 1500», Sysmex (Япония); уровень активности антитромбина-III (%) определяют хромогенным методом на автоматическом коагулометре «СА 1500», Sysmex (Япония); концентрацию оксида азота (мкмоль/л) определяют спектрофотометрическим методом, согласно которому кадмий в присутствии цинка восстанавливает нитрат до нитрита, интенсивность окраски полученных продуктов измеряют на спектрофотометре SPECORD 40 (Analytik Jena AG, Германия); концентрацию малонового диальдегида (нмоль/мл) определяют в тесте с тиобарбитуровой кислотой (ТБК) [Гаврилов В.Б., Гаврилова А.Р., Мажуль Л.М. Анализ методов определения продуктов перекисного окисления липидов в сыворотке крови по тесту с тиобарбитуровой кислотой. Вопр. мед. химии. 1987; 1: 118-22], интенсивность флуоресценции бутанольных экстрактов, обусловленную наличием окрашенных продуктов ТБК-реакции, измеряют на спектрофлуориметре LS 55 (PerkinElmer, Великобритания); концентрацию ангиотензинпревращающего фермента (ACE units) оценивают спектрофотометрическим методом на биохимическом анализаторе «AU2700» (Beckman Coulter, США); тотальный антиоксидантный статус (ммоль/л) определяют спектрофотометрическим методом на биохимическом анализаторе «Olympus AU2700» (Beckman Coulter, США).

Указанный значимый комплекс параметров был получен по результатам лечения 70 критических реанимационных пациентов с COVID-19 в условиях проведения экстракорпоральной мембранной оксигенации. Факты осложнений тромботического и геморрагического характера, включая тромбозы элементов экстракорпорального контура, были соотнесены с показателями свертывающей системы крови и дозировкой нефракционированного гепарина, полученными перед событиями не ранее чем за 24 часа, что позволило установить связь изменений данных показателей и осложнений и установить зависимость между ними. Для анализа полученных данных использовались смешанные логистические регрессионные модели с включением уникального индекса пациента в качестве переменной, для которой оценивались случайные эффекты предикторов (гепарин, АЧТВ, антитромбин-3, NOx, MDA, ACE, TAS) риска наступления событий (тромботических и геморрагических). На основе полученных моделей оценивался риск развития событий в зависимости от значения предиктора (гепарин, АЧТВ, антитромбин-3, NOx, MDA, ACE, TAS). Далее на основе предсказаний моделей проведена комплексная оценка предикторов, для которых наблюдался минимальный совместный риск развития геморрагических и тромботических событий.

Заявляемый способ подтверждается следующими клиническими примерами.

Клинический пример 1.

Пациент Р., 57 л., поступила 17.04.2021, диагноз коронавирусная инфекция, вызванная вирусом COVID-19, внебольничная двусторонняя полисегментарная пневмония, дыхательная недостаточность 2 ст., 20.04.2021 подключено ЭКМО, на 5 сутки от начала ЭКМО планово проведена лабораторная диагностика: АЧТВ – 22,2 сек, антитромбин-III – 71%, NOx – 14,99 мкмоль/л, MDA – 2,537 нмоль/мл, ACE – 21,6 ACE units, TAS – 2,16 ммоль/л, рассчитана дозировка гепарина – 5 МЕ/кг/час, что соответствовало 18 баллам и высокой степени риска возникновения тромбозов и кровотечений. В течение суток методом ультразвукового исследования выявлен неокклюзионный тромбоз обеих внутренних яремных вен и правой общей бедренной вены.

Клинический пример 2.

Пациент З., 56 л., поступил 24.03.2021, диагноз коронавирусная инфекция, вызванная вирусом COVID-19, внебольничная двустороняя полисегментарная пневмония, дыхательная недостаточность 2 ст., 29.03.2021 подключено ЭКМО, в 1 сутки от начала ЭКМО планово проведена лабораторная диагностика: АЧТВ – 29,3 сек, антитромбин-III – 80%, NOx – 72,99 мкмоль/л, MDA – 2,904 нмоль/мл, ACE – 55,7 ACE units, TAS – 1,09 ммоль/л, рассчитана дозировка гепарина – 4,54 МЕ/кг/час, что соответствовало 13 баллам и средней степени риска возникновения тромбозов и кровотечений. В течение суток произошло кровотечение из полости носа объемом 20см3. Средняя степень риска для уточнения прогноза требует дополнительных методов исследования, например, проведения тромбоэластометрии.

Клинический пример 3.

Пациент Ю., 63 г., поступила 04.05.2021, диагноз коронавирусная инфекция, вызванная вирусом COVID-19, внебольничная двустороняя полисегментарная пневмония, дыхательная недостаточность 2 ст., 07.05.2021 подключено ЭКМО, в 1 сутки от начала ЭКМО планово проведена лабораторная диагностика: АЧТВ – 48,9 сек, антитромбин-III – 86%, NOx – 24,67 мкмоль/л, MDA – 4,734 нмоль/мл, ACE – 69 ACE units, TAS – 1,44 ммоль/л, рассчитана дозировка гепарина – 11,49 МЕ/кг/час, что соответствовало 10 баллам и низкой степени риска возникновения тромбозов и кровотечений. В течение последующих суток до выписки из стационара тромбозов и кровотечений не наблюдалось.

Способ прогнозирования тромбозов и кровотечений у критических пациентов с COVID-19 в условиях проведения экстракорпоральной мембранной оксигенации (ЭКМО), включающий определение следующих показателей: объем гепаринизации нефракционированным гепарином (ME/кг/час), активированное частичное тромбопластиновое время (сек), уровень активности антитромбина-III (%), концентрацию оксида азота (мкмоль/л), концентрацию малонового диальдегида (нмоль/мл), концентрацию ангиотензинпревращающего фермента (ACE units), тотальный антиоксидантный статус (ммоль/л), измеренным показателям присваивают баллы в соответствии с Таблицей 1, полученные баллы суммируют, и при получении значения суммы баллов от 7 до 10 включительно прогнозируют низкую степень риска тромбозов и кровотечений, при сумме баллов от 11 до 16 включительно – среднюю степень, при сумме баллов от 17 до 21 включительно – высокую степень.



 

Похожие патенты:
Изобретение относится к медицине, а именно к кардиологии и ангиологии, и может быть использовано для оценки вероятности развития острого инфаркта миокарда у пациентов с перемежающейся хромотой вследствие облитерирующего атеросклероза артерий нижних конечностей в течение года. Осуществляют определение в периферической венозной крови активности фактора свертываемости FXI, оценку наличия или отсутствия постинфарктного кардиосклероза в анамнезе, с учетом возраста пациента.

Группа изобретений относится к медицине и касается способа измерения реактивности фактора свертывания VIII, где способ включает стадию, на которой приводят в контакт (1) полученный из крови образец, содержащий субстанцию, обладающую активностью в отношении функционального замещения фактора свертывания VIII, где субстанция является биспецифическим антителом, которое связывается с фактором свертывания IX и/или активированным фактором свертывания IX и фактором свертывания X и/или активированным фактором свертывания крови X, с (2) одной или несколькими субстанциями, нейтрализующими субстанцию, обладающую активностью в отношении функционального замещения фактора свертывания VIII, где одна или более нейтрализующих субстанций представляет собой одну или несколько субстанций, выбранных из группы, состоящей из пептидов, полипептидов, органических соединений, аптамеров и антител, которые нейтрализуют субстанцию, обладающую активностью в отношении функционального замещения фактора свертывания VIII; с последующим измерением реактивности фактора свертывания с помощью измерения активности фактора свертывания VIII или титра ингибитора фактора свертывания VIII.

Группа изобретений относится к фармацевтической промышленности, а именно к способам ex-vivo получения активированного образца обогащенной тромбоцитами плазмы и к способу получения тромбоцитарного геля с заданной механической прочностью сгустков в тромбоцитарном геле. Способ ex-vivo получения активированного образца обогащенной тромбоцитами плазмы (ОТП) включает: получение образца обогащенной тромбоцитами плазмы для активации, добавление в полученный образец ОТП ионов кальция в концентрации, которую выбирают исходя из заданных параметров в активированном образце ОТП, выбранных из времени образования сгустка и/или механической прочности сгустков; размещение образца ОТП между электродами устройства для электромагнитной стимуляции; установление набора параметров электрического импульса исходя из указанной концентрации ионов кальция и указанных заданных параметров активированного образца ОТП и воздействие на образец ОТП с добавленными ионами кальция одним или более электрическими импульсами, генерируемыми в соответствии с установленными значениями параметров электрического импульса, с получением активированного образца ОТП, содержащего один или более факторов роста и имеющего указанные заданные параметры (варианты).
Изобретение относится к медицине. Способ прогнозирования исхода ожоговой болезни у пациентов с тяжелой термической травмой включает забор венозной крови у пациента в первые сутки после травмы до начала антикоагулянтной терапии с получением плазмы свободной от тромбоцитов, последующим измерением стационарной скорости роста сгустка Vst (мкм/мин), плотности сгустка D (усл.ед.) и определением коэффициента К по формуле К=(Vst×100)/D, при получении значения К<0,025 прогнозируют неблагоприятный исход на 1-3 сутки, при получении значения К>0,25 прогнозируют неблагоприятный исход с 4 по 10 сутки, при получении значения К=0,1-0,2 прогнозируют благоприятный исход у пациентов с термической травмой.

Изобретение относится к области медицины, а именно к неврологии, и предназначено для прогнозирования риска развития церебральной микроангиопатии. Для оценки риска развития и прогрессирования церебральной микроангиопатии исследуемую кровь после удаления из нее плазмы в количестве 80 мкл помещают в 120 мкл 0,73% раствора хлорида натрия и в 15 мг сахарозы и оставляют на 60 минут для экспозиции при комнатной температуре.

Изобретение относится к области медицины. Способ оценки динамики и полноты ретракции кровяного сгустка для прогнозирования вероятности спонтанного прерывания беременности заключается в том, что берут пробы крови пациентки в содержащие цитрат натрия емкости, переносят цитратную кровь в пробирку и добавляют хлорид кальция и 1 ЕД/мл тромбина, берут двухканальную измерительную кювету, ополаскивают раствором Тритона X-100 на хлориде натрия внутренние поверхности каналов кюветы, удаляют остатки детергента, переносят в измерительную кювету цитратную кровь с добавленным хлоридом кальция и тромбина, проводят фотофиксацию в автоматическом режиме изменения размеров двумерного изображения сгустка крови, проводят построение по результатам фиксации кинетической кривой зависимости изменения площади проекции сгустка от времени, определяют и оценивают по построенной кривой параметры динамики контракции сгустка крови, при этом производят измерение температуры тела обследуемой пациентки, в термостатируемой камере устанавливают температуру тела обследуемой пациентки, измерительную кювету с исследуемой кровью помещают в термостатируемую камеру; производят диагностику путём сравнения показателей кинетики контракции сгустка крови обследуемой пациентки с усредненными показателями кинетики контракции сгустка крови ранее рожавших небеременных женщин без отягощенного акушерского анамнеза и предшествующих осложнений беременности и принятыми за норму.

Изобретение относится к лабораторной диагностике и может быть использовано для определения фибриногена и оценки его функциональности. Способ определения фибриногена (ФГ) при рекальцификации цитратной плазмы и его функциональности включает активацию контактного пути коагуляции в полистироловых 96-луночных плоскодонных иммунологических планшетах путем смешивания цитратной плазмы крови с хлоридом кальция с последующей фотометрической регистрацией свертывания, при этом для усиления коагуляции фибриногена снижают осмолярность в опытной пробе добавлением 50 мкл дистиллированной воды к 150 мкл тестовой системы, в контрольной пробе вместо воды добавляют 50 мкл буфера VBS, запускают реакцию коагуляции добавлением 50 мкл 25 мМ СаCl2 в пробу, тщательно перемешивают, измеряют оптическую плотность проб, далее инкубируют в течение 120 мин при 37°С, определение коагуляции плазмы проводят фотометрически по изменению мутности проб при длине волны 450 нм с интервалами измерения 0 и 120 мин, в исходной плазме определяют содержание ФГ по методу Клаусса, рассчитывают индивидуальный коэффициент для перевода изменений оптической плотности в пробе при коагуляции как отношение ФГ по Клауссу к изменению оптической плотности пробы (ΔА450), рассчитывают среднее значение коэффициента, содержания фибриногена определяют по формуле: ФГ (г/л) = ΔА450 × 4,9, где: ΔА450 - изменение оптической плотности пробы при коагуляции плазмы; 4,9 - среднее значение коэффициента для перевода изменений оптической плотности пробы при коагуляции плазмы в г/л фибриногена, определяют дисфункциональность фибриногена как разность между количествами фибриногена, определенными данным способом и методом.

Группа изобретений относится к области медицины и может быть использована для определения времени свертывания подлежащей анализу пробы крови. Для этого предлагается способ определения времени свертывания подлежащей анализу пробы крови, включающий в себя следующие этапы: берут реакционную кювету (2), помещают ферромагнитный шарик (11) на поверхность качения (9) реакционной кюветы (2), воздействуют на шарик (11) магнитным полем для приведения его в колебательное движение по поверхности качения (9), освещают пробу крови падающим световым лучом (36), детектируют световой луч (38), пропущенный через кювету (2) и исходящий из падающего светового луча (36), с получением при этом измерительного сигнала (SM).

Изобретение относится в медицине, а именно к терапии и кардиологии, и может быть использовано для оценки высокого, умеренного и низкого риска тромбогенных осложнений течения ишемической болезни сердца (ИБС). До лечения заболевания оценивают триацилглицерол (ТАГ), а коэффициент атерогенности рассчитывают как отношение (ОХС+ТАГ)/ХС ЛПВП.

Изобретение относится к лабораторной диагностике и может быть использовано для определения фибриногена при термокоагуляции цитратной плазмы и оценки его функциональности. Способ определения фибриногена при термокоагуляции цитратной плазмы и оценки его функциональности, включающий термокоагуляцию цитратной плазмы путем инкубации в течение 5 мин при 56°С с последующей фотометрической регистрацией при длине волны 450 нм, далее проводят расчет содержания фибриногена по формуле: ФГ (г/л) = ΔА450 × 5,29, где ΔА450 - изменение оптической плотности пробы при термокоагуляции цитратной плазмы; 5,29 - расчетный коэффициент перевода изменения оптической плотности опытной пробы в г/л фибриногена, представляющий собой отношение белка в преципитате фибриногена к изменению оптической плотности в пробе при термокоагуляции плазмы, рассчитывают функциональность фибриногена как разность между количествами фибриногена, определенными данным способом и по методу Клаусса, рассчитывают разницу в % и при разнице более 10% определяют как нарушенную функциональность фибриногена.

Изобретение относится к медицине, а именно к клинико-лабораторной диагностике, и может быть использовано для прогнозирования исхода острого заболевания, вызванного новой коронавирусной инфекцией COVID-19, по концентрации цитокинов в плазме крови. До начала терапии определяют в плазме крови концентрацию интерлейкина-6 (ИЛ-6) и интерлейкина-18 (ИЛ-18).
Наверх