Способ получения порошков карбидов титана и вольфрама

Изобретение относится к способу получения порошков карбидов титана или вольфрама путем смешения порошков каждого из этих металлов с электротехнической сажей и предварительной механохимической обработкой исходной смеси с последующим нагревом и механохимической обработкой продуктов синтеза, причем после механической обработки металла и электротехнической сажи в смесь вводят водный раствор поливинилового спирта, который в ходе постадийного нагрева смеси подвергают деструкции до газообразных продуктов, которые отсутствуют в конечном продукте. 2 з.п. ф-лы, 2 пр.

 

Изобретение относится к неорганической химии, в частности к получению порошков карбидов титана и вольфрама, и может найти применение в создании защитных и упрочняющих покрытий, а также в производстве конструкционных и инструментальных материалов, способных работать при высокой температуре, в агрессивных средах и при больших нагрузках.

Известен СВС-способ получения карбида титана (патент на изобретение РФ 1570225, МПК С01В 31/30, дата публикации 27.08.2003), включающий локальное воспламенение и высокотемпературное взаимодействие в режиме горения смеси порошков титана и углерода, окруженной оболочкой из пористого материала. С целью повышения выхода карбида титана и улучшения его абразивных свойств в качестве пористого материала используют кварцевый песок, а локальному воспламенению подвергают инициирующую шихту из порошков титана и углерода, имеющую скорость горения, в 1,5-2 раза превышающую скорость горения основной смеси порошков, которую помещают в центр исходной основной смеси.

Недостатком известного способа является сложное аппаратурное оборудование ввиду применения высокотемпературного взаимодействия в режиме горения смеси порошков титана и углерода.

Известен способ получения карбида титана (патент на изобретение РФ 2175988, МПК С22В 34/12, дата публикации 20.11.2001) путем взаимодействия титановых порошков с сажистым углеродом. Исходную смесь предварительно выдерживают в вакууме при температуре 746-946°С в течение 60-120 мин. После этого ее непрерывно подают в реакционную зону аппарата при температуре 1431-1546°С. Благодаря такому решению отпадает необходимость в сложной аппаратуре и исключается выделение реакционных газов, что позволяет увеличить производительность в 2-3 раза и снизить стоимость получаемого карбида на 25-30%.

Недостатком известного способа является применение дополнительного оборудования ввиду необходимости создания вакуума.

Известен способ получения карбида вольфрама (патент на изобретение РФ 2179950, МПК С01В 31/34, дата публикации 10.03.2002), включающий взаимодействие вольфрамата натрия с углеродом, при котором процесс ведут на внутренней поверхности герметично закрытого графитового контейнера в среде инертного газа в течение 1-2 ч., поддерживая при этом соотношение объемов загружаемого вольфрамата натрия и контейнера в пределах 1-10:20.

Недостатком известного способа является применение дополнительного оборудования ввиду необходимости создания среды инертного газа.

Известен способ получения ультрадисперсного порошка сложного карбида вольфрама и титана (патент на изобретение РФ 2562296, МПК С01В 31/34, дата публикации 10.09.2015), путем обработки микроволновым излучением с постепенным нагревом до 1350-1400°С.

Недостатками известного способа является сложное аппаратурное оформление ввиду применения микроволнового излучения и применение дополнительного оборудования ввиду необходимости создания тока аргона.

Известен способ получения карбида вольфрама (патент на изобретение РФ 2394761, МПК С01В 31/34, дата публикации 20.07.2010) механохимической активацией смесей металлического вольфрама с углеродным материалом и последующим прокаливанием в среде инертного газа. В качестве углеродного материала используют графит, или антрацит, или активированный уголь, или сажу, или углеродные ксерогели, или нановолокнистый углерод, или углеродные волокна из полиакрилонитрила, или их любые смеси. Углеродный материал и вольфрам берут в количестве, обеспечивающим отношение, превышающее необходимое для образования карбида вольфрама на 10-50%. Температуру прокаливания выбирают из интервала 650-800°С.

Недостатком известного способа является применение дополнительного оборудования ввиду необходимости создания среды инертного газа.

Наиболее близким техническим решением, выбранным за прототип, является способ получения нанодисперсных порошков карбидов вольфрама и титана методом самораспространяющегося высокотемпературного синтеза (СВС) (патент на изобретение РФ 2508249, МПК С01В 31/34, дата публикации 27.02.2014), включающий приготовление смеси компонентов, состоящей из экзотермической части, включающей исходный тугоплавкий материал, углеродный материал и при необходимости добавку, термообработку смеси в режиме горения в токе аргона и последующую обработку продуктов синтеза, при этом в качестве исходного тугоплавкого материала используют смесь вольфрама и титана, которые подвергают предварительной механохимической обработке в механохимическом активаторе при следующем соотношении компонентов, мас.ч.: W 18,8-71,6 Ti 15,3-64,0 С 11,7-17,3, после чего проводят термообработку активированной смеси в режиме горения, в качестве добавки используют кобальт или никель, которые вводят в смесь исходных компонентов либо на стадии предварительной механохимической обработки, либо на стадии последующей обработки продуктов синтеза в количестве не более 15 мас.ч.

Недостатком известного способа является применение дополнительного оборудования ввиду необходимости создания тока аргона и сложное аппаратурное оформление ввиду применения самораспространяющегося высокотемпературного синтеза.

Задача изобретения состоит в упрощении технологического процесса получения порошков карбида титана и вольфрама

Технический результат достигается тем, что в способе получения порошков карбидов титана и вольфрама смешивают порошки каждого из указанных металлов с электротехнической сажей, подвергают предварительной механохимической обработке исходной смеси с последующим нагревом в электрокамерной печи и механохимической обработкой продуктов синтеза, согласно изобретению, после механической обработки металла и элетротехнической сажи в смесь вводят 10%-ный водный раствор поливинилового спирта, который в ходе постадийного нагрева смеси подвергают деструкции до газообразных продуктов, которые отсутствуют в конечном продукте.

Газообразные продукты распада поливинилового спирта используют в качестве интермедиата для взаимодействия металла с элетротехнической сажей, что освобождает от необходимости создания вакуума и инертных газов.

Исходными компонентами среды являются порошок металла (порошок вольфрама с размером частиц 0,8-1,5 мкм, порошок титана с размером частиц 1,0-1,6 мкм), электротехническая сажа, поливиниловый спирт (далее ПВС, процент омыления - 95%).

Соответствие заявленного решения критерию изобретения «промышленная применимость» показано на примерах конкретного выполнения способов получения карбидов титана и вольфрама.

Приводимые ниже примеры позволяют проиллюстрировать изобретение, однако не ограничивают его.

Пример 1. Способ получения порошка карбида титана

Готовят смесь порошка титана и электротехнической сажи в следующем соотношении (по массе): 79-81% титана и 19-21% сажи. Полученную смесь перетирают на механической ступке: 1 кг смеси перетирают в течение 6 минут. При увеличение массы смеси время увеличивают пропорционально массе исходя из заданной разовой загрузки.

Затем готовят 10%-ный водный раствор ПВС. Смешивают полученный водный раствор ПВС с перетертой смесью порошка металла и сажи в следующем соотношении (по массе): 20% водного раствора ПВС и 80% смеси металла и сажи. Полученную смесь перетирают на механической ступке: 1 кг смеси перетирают 8 минут (разовая загрузка).

Далее смесь заливают в керамические тигли на 80%) от его объема, закрывают крышкой и помещают в электрокамерную печь, нагретую до 110°С, выдерживают при температуре 110°С: 1 кг смеси выдерживают 30 минут, 2 кг - 1,5 часа, 3 кг - 3 часа.

Затем производят нагрев печи до 450°С со скоростью 2-3°С/мин и выдерживают смесь при температуре 450°С: 1 кг смеси выдерживают 2 минуты, 2 кг - 2,5 минуты, 3 кг - 3 минуты.

После этого производят нагрев печи до 850-1050°С в зависимости от исходного размера частиц титана со скоростью 4-5°С/мин и выдерживают смесь при температуре 850-1050°С: 1 кг смеси выдерживают 1,5 часа, 2 кг - 3,5 часа, 3 кг - 5 часов. По окончании синтеза тигли извлекают из печи, их содержимое перемещают на механическую ступку и перетирают: 1 кг смеси перетирают 4 минуты (разовая загрузка).

Определение содержания свободного непрореагировавшего углерода с смеси производят 20% раствором гидроксида натрия при температуре 60°С. Формирование связей металл-углерод контролируют методом ИК-спектроскопии. Размер карбида титана, полученного данным способом, составляет - 1,0-1,6 мкм. Количество непрореагировавшего углерода составляет 0,5-0,8%) (по массе).

Пример 2. Способ получения порошка карбида вольфрама

Готовят смесь порошка вольфрама и электротехнической сажи в следующем соотношении (по массе): 92-95% вольфрама и 5-8% сажи. После этого повторяют операции, указанные в первом примере, вплоть до нагрева смеси до 450°С и выдержке при данной температуре.

После этого производят нагрев печи до 950-1200°С в зависимости от исходного размера частиц вольфрама со скоростью 4-5°С/мин и выдерживают смесь при температуре 950-1200°С: 1 кг смеси выдерживают 1,5 часа, 2 кг - 3,5 часа, 3 кг - 5 часов. По окончании синтеза тигли извлекают из печи, их содержимое перемещают на механическую ступку и перетирают: 1 кг смеси перетирают 4 минуты (разовая загрузка).

Определение содержания свободного непрореагировавшего углерода с смеси и формирование связей металл-углерод контролируют аналогично примеру 1. Размер карбида вольфрама, полученного данным способом, составляет 0,8 мкм. Количество непрореагировавшего углерода составляет 0,5-0,8% (по массе).

Предложенный способ получения порошков карбидов титана и вольфрама позволяет получить качественный конечный продукт путем воздействия низких температур с использованием доступного оборудования.

1. Способ получения порошков карбидов титана или вольфрама путем смешения порошков каждого из этих металлов с электротехнической сажей и предварительной механохимической обработкой исходной смеси с последующим нагревом и механохимической обработкой продуктов синтеза, отличающийся тем, что после механической обработки металла и электротехнической сажи в смесь вводят водный раствор поливинилового спирта, который в ходе постадийного нагрева смеси подвергают деструкции до газообразных продуктов, которые отсутствуют в конечном продукте.

2. Способ по п. 1, отличающийся тем, что для образования порошков карбидов металлов используют постадийный нагрев в температурном диапазоне от 850 до 1200 °С с использованием в качестве интермедиата продукты разложения поливинилового спирта.

3. Способ по п. 1, отличающийся тем, что размер порошков карбида титана составляет 1,0-1,6 мкм, а карбида вольфрама 0,8-1,5 мкм.



 

Похожие патенты:

Изобретение относится к газовой промышленности и может быть использовано при транспортировке газообразных энергоносителей на дальние расстояния. Метано-водородную смесь с содержанием водорода не менее 70% транспортируют по трубопроводу.

Изобретение относится к области получения кристаллов безазотного алмаза, содержащих оптически активные центры SiV, GeV и SnV, для использования в фотонных и оптоэлектронных устройствах. Способ получения кристаллов безазотного алмаза включает воздействие на систему углерод - редкоземельный элемент высоких давления и температуры в области термодинамической стабильности алмаза с использованием редкоземельных металлов в качестве катализаторов, в качестве которых используют один из редкоземельных металлов La, Се, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y, при этом в систему дополнительно вводят один или более легирующих элементов IV группы, таких как Si, в виде примеси в графите в количестве порядка 120 млн-1 и/или Ge или Sn в количестве 5-10 вес.

Изобретение относится к области порошковой металлургии тугоплавких соединений, в частности к способу получения порошков карбидов тугоплавких переходных металлов (Ti, Zr, Hf, Nb, Та и V), которые используются в качестве лигатур, компонентов сплавов, мишеней для плазменного напыления, самостоятельных керамических материалов и др.

Модифицирующая добавка для асфальтобетона, включающая смесь углеродных наноматериалов. Добавка характеризуется тем, что углеродные наноматериалы распределены в минеральном порошке и включают одностенные углеродные нанотрубки, многостенные углеродные нанотрубки, графен и углеродные нановолокна при следующем соотношении компонентов, мас.%: одностенные углеродные нанотрубки 0,01-15%, многостенные углеродные нанотрубки 0,01-15%, графен 0,01-15%, углеродные нановолокна 0,01-15%, минеральный порошок – остальное.
Изобретение относится к способу получения углеродного материала на основе графита, включающему приёмы смешения исходного графита с химическим реагентом и последующий термический нагрев. При этом в качестве химического реагента используют смесь, состоящую из жидкого аммиака и одного из соединений ацетиленидов щелочных металлов, имеющих общую структурную формулу: Ме-С≡С-R, где Ме – Na, K; R - H, -СхНу при х=1-6, y=2-13, где ацетилениды щелочных металлов используют в концентрации 1-5 мол.% по отношению к графиту, до нагрева графит выдерживают под слоем раствора в течение 15-60 минут, после чего его извлекают, сушат при комнатной температуре и далее подвергают нагреву при 500-800°С в режиме термоудара.

Изобретение относится к установке для получения водорода и ацетилена высокотемпературным пиролизом метана, содержащей электродуговой нагреватель, включающий три дуговые камеры с электродами, соленоиды для создания магнитного поля, распложенные так, что электроды находятся в магнитных полях, закалочную камеру со средствами подачи охлаждающей воды.

Изобретение относится к химической технологии изготовления композиционных материалов, в частности к способу получения изделий из терморасширенного графита с повышенной термостойкостью, и может использоваться для повышения термической стойкости к окислению воздухом изделий из терморасширенного графита.

Изобретение может быть использовано в медицине. Предложено применение графенового наноматериала, представляющего собой графеновые нановолокна, для лечения поражений кожи, выбранных из ран, экземы, кожных ожогов и кожных язв.

Изобретение может быть использовано в химической промышленности. Для получения аргона и азота подвергают технологический газ 22, содержащий NOx, стадии абсорбции NOx в средстве 23 абсорбции, получая азотную кислоту 24 и хвостовой газ 25, содержащий азот, аргон и остаточный NOx.

Группа изобретений относится к графеновому продукту и его применению в косметике. Графеновый наноматериал представляет собой графеновые нановолокна и имеет количественное распределение частиц по размерам с dn(90), равным 0,60 мкм или менее, объемное распределение частиц по размерам с dv(90), равным 80,00 мкм или менее, согласно измерению при помощи лазерного дифракционного анализатора размеров частиц.

Изобретение относится к жидкому органическому носителю водорода, представляющему собой смесь ароматических углеводородов, содержащих С5-С6-циклы, способных в присутствии катализаторов присоединять атомы водорода, причем смеси содержат по крайней мере одно соединение, выбранное из ряда: флуорантен, флуорен, и по крайней мере одно соединение, выбранное из ряда: антрацен, нафталин, фенантрен, бензол, причем жидкий органический носитель водорода представляет собой смесь двух или трех компонентов, причем для бинарной системы соотношения компонентов выбраны из ряда 25:75% масс., 50:50% масс., 75:25% масс., а для системы из трех компонентов первый компонент взят в количестве 25% масс., второй компонент взят в количестве 26% масс., третий компонент - в количестве 50% масс. и третий компонент выбирается из антрацена, нафталина, фенантрена, бензола. Также изобретение относится к водородному циклу, реализуемому при связывании водорода при температурах от 110 до 160°С и освобождении водорода при температурах от 320 до 350°С, включающему связывание водорода и его высвобождение из жидкого органического носителя водорода, указанного выше, в присутствии гетерогенного катализатора, причем гетерогенный катализатор включает носитель Al2O3 и нанесенную на него Pt, содержание платины Pt находится в пределах от 0,1 до 2,0% масс., и/или Pd, содержание палладия Pd находится в пределах от 0,1 до 2,0% масс., или Ni, содержание никеля Ni находится в пределах от 6 до 12% масс. Использование предлагаемого носителя обеспечивает более высокую энергетическую эффективность. 2 н.п. ф-лы, 1 табл., 40 пр.
Наверх