Способ получения сульфида галлия (ii)


C01G1/12 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)
B01J19/123 - Химические, физические или физико-химические способы общего назначения (физическая обработка волокон, нитей, пряжи, тканей, пера или волокнистых изделий, изготовленных из этих материалов, отнесена к соответствующим рубрикам для такого вида обработки, например D06M 10/00); устройства для их проведения (насадки, прокладки или решетки, специально предназначенные для биологической обработки воды, промышленных и бытовых сточных вод или отстоя сточных вод C02F 3/10; разбрызгивающие планки или решетки, специально предназначенные для оросительных холодильников F28F 25/08)

Владельцы патента RU 2768954:

Федеральное государственное бюджетное учреждение науки Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук (ИФТТ РАН) (RU)

Изобретение относится к получению сульфида галлия (II), являющегося перспективным материалом для полупроводниковой оптоэлектронной техники и инфракрасной оптики. Способ получения сульфида галлия (II) включает двухтемпературный химический синтез в замкнутом объеме из элементарных галлия и серы, взятых в стехиометрическом соотношении. Расплав галлия при этом имеет температуру 1050-1100°С, а расплав серы - 300-350°С. Синтез проводят в вакууме в присутствии ультрафиолетового излучения. Изобретение позволяет получить однофазный продукт GaS без использования взрывоопасного водорода. 1 ил., 1 пр.

 

Изобретение относится к неорганической химии, а именно к получению сульфида галлия (II), являющегося перспективным материалом для полупроводниковой оптоэлектронной техники и инфракрасной оптики.

Известен способ получения сульфида галлия (II) [Колесников Н.Н., Борисенко Д.Н., Борисенко Е.Б., Тимонина А.В. // Патент РФ №2623414 от 26.06.2017 Бюл. № 18] - прототип, в котором химическую реакцию Ga+S=GaS проводили в атмосфере водорода при давлении 1300-2600 Па, причем расплав галлия имел температуру TGa=1050-1100°С, расплав серы - температуру TS=300-350°С. Время синтеза сульфида галлия (II) с момента выхода печи на заданную температуру занимало около 30 минут при общей массе загрузки Ga+S равной 100 г. Процесс синтеза протекал полностью: элементарных галлия и серы, а также побочных продуктов синтеза (высших сульфидов галлия) по данным рентгенофазового анализа не обнаружено. С термодинамической точки зрения химическая реакция Ga+S=GaS должна протекать самопроизвольно(ΔG<0), и несмотря на то что вследствие большой энергии активации реакция начинается при Т>1000°С, тем не менее, начавшись, синтез в отсутствие катализатора (водорода) быстро прекращается даже при более высоких температурах вплоть до 1300°С, когда кварцевая ампула уже теряет свою механическую прочность. Поэтому в дальнейших поисках наиболее оптимальных условий получения сульфида галлия (II) кинетический фактор следует рассматривать как наиболее значимый. Существенным недостатком способа-прототипа являются технические сложности, возникающие при работе с водородом по причине его высокого химического сродства к кислороду, а также повышенным требованиям к классу взрывоопасности помещения и оборудования.

Поэтому задачей настоящего изобретения является разработка способа получения сульфида галлия (II) из элементарных галлия и серы в условиях пригодных для промышленного применения с образованием однофазного продукта без использования катализатора (водорода).

Эта задача решается за счет того, что синтез GaS проводят в вакуумированной (р≤1,33 Па) кварцевой ампуле из элементарных галлия 99,9999 % (масс.) и серы 99,9999 % (масс.), взятых в стехиометрическом соотношении. Для улучшения кинетики химической реакции кварцевую ампулу с загрузкой галлия и серы на протяжении всего процесса дополнительно облучают ультрафиолетовым излучением. Во время синтеза галлий покрывается слоем конгруэнтно плавящегося GaS, который является кинетическим экраном для олигомеров серы и пассивирует поверхность жидкого металла. Энергия диссоциации молекулы первого олигомера (димера) - сульфида серы - равна D=4,37 эВ [Б.М. Смирнов, А.С. Яценко. // Успехи физических наук. - 1996. - Т. 199. - № 3. - С. 225-245]. С точки зрения квантовой электродинамики (D=h⋅c⋅λ-1, где h - постоянная Планка, с - скорость света, λ - длина волны падающего излучения) для разрушения химической связи в молекуле S=S и получения атомарной серы требуется квант света с длиной волны λ≤284 нм. Этому диапазону длин волн удовлетворяет «дальний ультрафиолет» (по стандарту ISO-DIS-21348).

Пример. Навески элементарных галлия 99,9999 % (масс.) и серы 99,9999 % (масс), взятых в стехиометрическом соотношении общей массой 100 г, загружали в кварцевую ампулу, вакуумировали до давления р≤1,33 Па и запаивали. Ампулу помещали в горизонтальную трубчатую печь таким образом, чтобы расплав галлия имел температуру TGa=1050-1100°С, расплав серы - TS=300-350°С. Во время синтеза ампулу облучали мощным источником ультрафиолетового излучения в качестве которого выступала разрядная лампа высокого давления ДРТ-240, лучистый поток которой в диапазоне длин волн 240-320 нм равен 24,6 Вт. Синтез сульфида галлия (II) завершался через 60 минут. По данным рент-генофазового анализа, представленным на Фиг. 1, побочных примесей: высших сульфидов галлия, а также элементарных галлия и серы в ампуле не обнаружено. Преимуществом предлагаемого способа синтеза сульфида галлия является возможность промышленного применения с образованием однофазного продукта без использования катализатора (водорода).

Способ получения сульфида галлия (II), включающий двухтемпературный химический синтез в замкнутом объеме из элементарных галлия и серы, взятых в стехиометрическом соотношении, при котором расплав галлия имеет температуру 1050-1100°С, а расплав серы - 300-350°С, отличающийся тем, что синтез проводят в вакууме в присутствии ультрафиолетового излучения.



 

Похожие патенты:

Изобретение относится к микроэлектронике и может быть использовано в области получения тонких пленок тугоплавких, или среднеплавких металлов, или их соединений. Способ включает предварительную подготовку подложки 6, герметизацию установки для термовакуумного испарения, нагрев испаряемых материалов с обеспечением генерации направленного потока частиц и их конденсацию на подложку в вакууме, при этом нагрев тугоплавких, или среднеплавких металлов, или их соединений до температуры испарения осуществляют тепловой энергией твердофазной экзотермической реакции самораспространяющегося высокотемпературного синтеза шихты 2, состоящей из смеси порошков тугоплавких металлов и углерода, размещённой в тигле 1, над которым расположена лодочка 3 с испаряемыми металлами или их соединениями 4.

Изобретение относится к области получения антимикробных составов и может быть использовано в качестве противомикробных добавок в лакокрасочные материалы и самостоятельного использования при дезинфекции различных поверхностей. Способ получения состава для антимикробного покрытия на основе ассоциатов нанокристаллов сульфида серебра (НК Ag2S) с молекулами метиленового голубого включает сливание растворов тиогликолевой кислоты и нитрата серебра при температуре 30°С при постоянном перемешивании с последующим покапельным титрованием водным раствором NaOH, добавлением водного раствора сульфида натрия с дальнейшим перемешиванием с образованием НК Ag2S, добавление к полученной смеси ацетона в объемном соотношении 1:1 и последующее центрифугирование, при этом используют 0,027-0,03 Μ водный раствор тиогликолевой кислоты, 0,0135-0,0154 Μ водный раствор нитрата серебра, и постоянное перемешивание ведут со скоростью 300-600 об/мин при обеспечении молярного соотношения 2:1, соответственно, покапельное титрование ведут 0,1 Μ водным раствором NaOH до рН 9, а затем добавляют 0,02-0,023 Μ водный раствор сульфида натрия с температурой от 15 до 25°С при объемном соотношении раствор тиогликолевой кислоты : раствор нитрата серебра : раствор сульфида натрия - 2:2:1, соответственно, дальнейшее перемешивание ведут, по меньшей мере, в течение 20 мин, центрифугирование полученного раствора ацетона с НК Ag2S проводят со скоростью 5000 об/мин в течение 30 мин для осаждения НК Ag2S, которые далее отделяют от водорастворимых продуктов реакции декантированием, а к отделенному осадку НК Ag2S добавляют 50% водно-этанольного раствора в объеме, равном сумме объемов смешиваемых растворов нитрата серебра, тиогликолевой кислоты и сульфида натрия, и приливают раствор метиленового голубого в 96%-ном этаноле в молярном соотношении Vкрасит/Vнк, составляющем 10-1-10-3.

Изобретение может быть использовано при создании мемристивных структур на основе шпинелей семейства «изоляторов Мотта». Способ синтеза шпинели GaNb4Se8 из элементарных веществ включает твердофазную химическую реакцию в вакуумированной и герметично запаянной кварцевой ампуле.

Изобретение относится к технологии выращивания кристаллов Co3Sn2S2, которые могут быть использованы в области экспериментальной физики как полуметаллический ферромагнетик, обладающий также свойствами полуметалла Вейля. Способ получения кристаллов Co3Sn2S2 в вакуумированной ампуле из расплава стехиометрического состава состоит в том, что ампулу с предварительно синтезированной загрузкой нагревают в горизонтальной печи до температуры 920-940°С, выдерживают при этой температуре 20-22 часа, а затем охлаждают до комнатной температуры в течение 45-46 часов.

Изобретение относится к искусственным ювелирным кристаллам. Предлагается искусственный эритроцинкит, имеющий в своем составе сульфид цинка, сульфид марганца и сульфид алюминия при следующем соотношении компонентов, мас.%: сульфид алюминия Al2S3 - 0,001-0,01, сульфид марганца MnS - 0,2-0,5, сульфид цинка ZnS - остальное.

Изобретение относится к монокристаллам литиевых халькогенидов, предназначенных к применению в нелинейной оптике для реализации перестройки лазерного излучения видимого и ближнего ИК-диапазона в средний ИК-диапазон. Получен нелинейный монокристалл литиевых халькогенидов общей формулы LiGaxIn1-xTe2, где х принимает любое значение от 0,1 до 0,9, имеющий пространственную группу Id тетрагональной симметрии, Z=4, с параметрами элементарной ячейки 6,3295<а<6,398 , 11,682<с<12,460 и объемом 468,01<V<510,0 , характеризующийся функциональными параметрами: диапазоном прозрачности от 0,76 до 14,8 микрон, шириной запрещенной зоны 1,837 эВ при 300 К, значениями двулучепреломления 0,049 при 2 мкм и нелинейными коэффициентами d13=3,70 пм/В и d14=48,73 пм/В.

Изобретение может быть использовано при создании тонкопленочных солнечных батарей. Для получения монозеренных кестеритных порошков используют прекурсорные смеси, состоящие из Cu2Se, CuSe, ZnS и SnSe2.

Изобретение относится к области неорганической химии, а именно к способу получения поликристаллов четверных соединений ALnAgS3 (A=Sr, Eu; Ln=Dy, Но) моноклинной сингонии со структурой типа BaErAgS3, которые перспективны для применения в качестве люминофоров, полупроводников и неметаллических ферромагнетиков, оптических материалов.

Изобретение относится к области оптического приборостроения и касается способа изготовления фильтров для ИК-диапазона. Способ заключается в выращивании из смеси бинарных компонент ZnSe и ZnS кристаллического слитка твердого раствора с перепадом температуры между зонами испарения и кристаллизации.

Изобретение может быть использовано в производстве элементов микроэлектроники, сенсорной техники. Гольмий-марганцевый сульфид с гигантским магнитосопротивлением включает марганец и серу и дополнительно содержит гольмий при следующем соотношении компонентов, мас.%: гольмий 2,5-15, марганец 47,5-35, сера 50.

Изобретение относится к нанотехнологии и может быть использовано в наноэлектронике при изготовлении инфракрасных сенсоров. На монокристалл InSb, являющийся наконечником одного из электродов, воздействуют импульсным электрическим полем в двухэлектродной ячейке при нормальных условиях при напряженности электрического поля, равной или более 106 В/см, продолжительности импульсов 10-20 мкс, длительности спада менее 1 мкс и скважности, равной 2.
Наверх