Способ получения активных углеродных материалов

Изобретение относится к способу получения углеродного пористого материала, который осуществляется следующим образом: исходное сырье, в качестве которого используют гудрон, асфальт, тяжелую сланцевую смолу, тяжелый газойль каталитического крекинга, подвергают замедленному коксованию при температуре от 495 до 505 °С и избыточном давлении от 1,5 до 3,5 ати с получением нефтяного кокса, затем полученный нефтяной кокс измельчают и смешивают его с порошком гидроксида калия в массовом соотношении 3:1, карбонизацию смеси проводят при температуре от 745 до 755 °С, далее промывают раствором соляной кислоты концентрацией от 0,8 до 1,2 М, затем водой до нейтрального значения рН промывных вод, после этого сушат при температуре от 105 до 120 °С с получением углеродного пористого материала с удельной площадью поверхности от 800 до 2300 м2/г. 4 пр., 1 табл.

 

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способу получения активных углеродных материалов (УМ) из нефтяного кокса замедленного коксования, и может быть использовано для получения высокоактивных сорбентов и углеродных носителей катализаторов нефте-, газохимической и других отраслей промышленности. Активные углеродные материалы получают путем активации нефтяного кокса гидроксидом калия в инертной среде при температуре 745-755°С.

Известен способ получения наноструктурированного углеродного материала (Патент РФ №2206394, опубл. 20.06.2003) путем окислительного сульфирования серной кислотой углеродного материала в присутствии соли азотной кислоты с последующим плавлением в присутствии гидроксидов металлов I группы для полного разложения сульфокислот и получения фенолятов. Полученный продукт подвергают карбонизации при 600-1000°С в инертной атмосфере, а затем промывают дистиллированной водой. Полученный продукт обладает высокой удельной площадью поверхности (3000-4000 м2/г) и уникальными адсорбционными свойствами.

Недостатками данного способа являются низкий выход целевого продукта - около 20%, вызванного интенсивным протеканием реакций окисления в присутствии сильной кислоты, и необходимость использования большого числа реагентов для активации поверхности углеродного материала.

Известен способ получения микропористых углеродных сорбентов (Патент РФ №2436625, опубл. 20.12.2011), включающий в себя стадии измельчения древесины березы до размера частиц 2-3 мм, их карбонизации в инертной среде при 300-800°С с выдержкой при конечной температуре 30 мин, активации в инертной среде в присутствии гидроксида калия, взятого в массовом соотношении уголь : щелочь равном 1:3, при 800°С в течение 1 ч и промывки полученных углеродных материалов сначала раствором соляной кислоты, затем дистиллированной водой. Полученный углеродный адсорбент имеет удельную площадь поверхности около 1023 м2/г.

Недостатками данного способа являются необходимость проведения предварительной карбонизации сырья, низкая удельная площадь поверхности получаемого углеродного материала, определяемого видом используемого сырья - древесины березы.

Известен способ получения активных углей из ароматических карбоновых кислот (Патент US №3817874, опубл. 18.06.1974), включающий предварительный нагрев исходного материала в две ступени, сначала до температуры 200-275°С с выдержкой при конечной температуре в течении 1-4 ч и последующий нагрев до 350-600°С с выдержкой при конечной температуре 15-45 мин. Полученный промежуточный материал затем пропитывают концентрированным раствором оксида или гидроксида щелочного или щелочноземельного металла, после чего растворитель испаряют. Активацию углеродного продукта проводят в присутствии CO2 при температуре 600-800°С в течение 0,5-1,5 часов. Полученный продукт имеет площадь поверхности 100-1300 м2/г.

Недостатком данного способа является необходимость проведения процесса в несколько стадий при различных температурных режимах, что усложняет процесс получения активированного материала и увеличивает время процесса. Удельная площадь поверхности получаемого углеродного материала является низкой, так как в качестве активирующего агента используется СО2.

Известен способ получения активированного углеродного материала (Патент US №4082694, опубл. 04.04.1978) из измельченного угля, каменноугольного кокса, нефтяного кокса или их смеси в присутствии водного гидроксида калия при двух температурах. Способ включает в себя измельчение исходного сырья до размеров менее 10 меш, перемешивание его с твердым гидроксидом калия, содержащим не менее 2% воды, в соотношении углеродный материал : щелочь = 1 : 3. Полученную смесь нагревают при перемешивании в инертной среде сначала до 600-900°С и выдерживают при конечной температуре от 15 мин до 13 ч, затем нагревают до 1300-1800°С и выдерживают при этой температуре от 20 мин до 4 ч. Полученный продукт затем охлаждают, промывают водой для удаления неорганических веществ, и сушат. Активированный углеродный материал имеет эффективную площадь поверхности превышающую 2300 м2/г.

Недостатками данного способа является проведение процесса активации в две стадии и высокая температура активации продукта на второй стадии, что уменьшает выход целевого продукта и увеличивает время протекания процесса до получения целевого продукта. Использование угля в шихте увеличивает зольность полученного активированного углеродного материала, что снижает качество готового продукта.

Известен способ получения углеродного сорбента из углеродсодержащего материала (Патент РФ №2558590, опубл. 10.08.2015), взятый за прототип, включающий совместное измельчение углеродсодержащего материала со щелочью или карбонатом щелочного металла в массовом соотношении КОН : УМ = 1 : 1 - 3 : 1, карбонизацию полученной смеси, прессование в пресс-форме под давлением 400 МПа в таблетки, их последующий нагрев до 800°С в токе азота и выдержку при данной температуре в течении 2 ч, промывку продукта соляной кислотой, а затем водой до нейтрального значения рН промывных вод. Выход активного углеродного материала составляет 45-60 %, а удельная площадь поверхности изменяется в интервале 780-2300 м2/г.

Недостатками данного способа является длительное время активации УМ и необходимость прессования сырья под высоким давлением.

Техническим результатом является получение активного углеродного материала с высокой площадью поверхности.

Технический результат достигается тем, что исходное сырье, в качестве которого используют гудрон, асфальт, тяжелую сланцевую смолу, тяжелый газойль каталитического крекинга, подвергают замедленному коксованию при температуре от 495 до 505°С и избыточном давлении от 1,5 до 3,5 ати. с получением нефтяного кокса, с выходом летучих веществ менее 9 %, карбонизацию смеси проводят при температуре от 745 до 755°С, далее промывают раствором соляной кислоты концентрацией от 0,8 до 1,2 М, затем водой до нейтрального значения рН промывных вод, после этого сушат при температуре от 105 до 120°С с получением углеродного пористого материала с удельной площадью поверхности от 800 до 2300 м2/г.

Способ осуществляется следующим образом. В качестве исходного сырья замедленного коксования используют гудрон, асфальт, тяжелую сланцевую смолу, тяжелый газойль каталитического крекинга. Сырье коксуют в камере коксования при температуре от 495 до 505°С и избыточном давлении от 1,5 до 3,5 ати. Полученный нефтяной кокс с низким выходом летучих веществ менее 9 % выгружают в емкость-приемник, а затем помещают в мельницу. В мельнице нефтяной кокс измельчают до размеров частиц менее 100 мкм. Затем измельченный нефтяной кокс помещают в емкость-смеситель и смешивают с порошком гидроксида калия в массовом соотношении гидроксид калия : кокс = 3 : 1. Полученную смесь помещают в высокотемпературную печь и карбонизируют при температуре от 745 до 755°С и скоростью нагрева от 5 до 6°С/мин в инертной атмосфере азота с выдержкой при конечной температуре в течение от 55 до 65 мин. После нагрева продукт охлаждают в печи в инертной атмосфере азота до комнатной температуры. Затем УМ выгружают в емкость-приемник и промывают сначала раствором соляной кислоты концентрацией от 0,9 до 1,1 М, затем водой для удаления остатков кислоты из продуктов реакции до нейтрального значения рН промывных вод. Промывная вода отправляется на блок очистки и утилизации. После промывки УМ сушат при от 105 до 120°С в сушильном шкафу до постоянной массы. Полученный углеродный пористый материал обладает высокой удельной площадью поверхности от 800 до 2300 м2/г.

Способ поясняется следующими примерами.

Пример 1. Гудрон коксуют при температуре 490-510°С и избыточном давлении от 1,4 до 3,6 ати. Полученный нефтяной кокс после выгрузки измельчают до размеров частиц менее 100 мкм, смешивают с порошком гидроксида калия в массовом соотношении КОН : УМ = 3 : 1 и карбонизируют при температуре от 745 до 755°С со скоростью нагрева от 5 до 6°С/мин. В инертной атмосфере азота с выдержкой при конечной температуре в течение 55-65 мин. После активации продукт охлаждают в инертной атмосфере азота до комнатной температуры, выгружают и промывают сначала раствором соляной кислоты концентрацией 0,8-1,2 М, затем водой для удаления остатков щелочи из продуктов реакции до нейтрального значения рН промывных вод и сушку УМ при 105-120°С до постоянной массы. Удельная площадь поверхности активного УМ, определенная по методу Брунауэра, Эммета и Теллера (БЭТ), представлена в таблице 1.

Пример 2. Асфальт коксуют при температуре 490-510°С и избыточном давлении от 1,4 до 3,6 ати. Полученный нефтяной кокс после выгрузки измельчают до размеров частиц менее 100 мкм, смешивают с порошком гидроксида калия в массовом соотношении КОН : УМ = 3 : 1 и карбонизируют при температуре от 745 до 755°С со скоростью нагрева от 5 до 6°С/мин. В инертной атмосфере азота с выдержкой при конечной температуре в течение от 55 до 65 мин. После активации продукт охлаждают в инертной атмосфере азота до комнатной температуры, выгружают и промывают сначала раствором соляной кислоты концентрацией 0,8-1,2 М, затем водой для удаления остатков щелочи из продуктов реакции до нейтрального значения рН промывных вод и сушку УМ при 105-120°С до постоянной массы. Удельная площадь поверхности активного УМ, определенная по методу БЭТ, представлена в таблице 1.

Пример 3. Тяжелую сланцевую смолу коксуют при температуре 490-510°С и избыточном давлении от 1,4 до 3,6 ати. Полученный нефтяной кокс после выгрузки измельчают до размеров частиц менее 100 мкм, смешивают с порошком гидроксида калия в массовом соотношении КОН : УМ = 3 : 1 и карбонизируют при температуре от 745 до 755°С со скоростью нагрева от 5 до 6°С/мин. В инертной атмосфере азота с выдержкой при конечной температуре в течение от 55 до 65 мин. После активации продукт охлаждают в инертной атмосфере азота до комнатной температуры, выгружают и промывают сначала раствором соляной кислоты концентрацией 0,8-1,2 М, затем водой для удаления остатков щелочи из продуктов реакции до нейтрального значения рН промывных вод и сушку УМ при 105-120°С до постоянной массы. Удельная площадь поверхности активного УМ, определенная по методу БЭТ, представлена в таблице 1.

Пример 4. Тяжелый газойль каталитического крекинга коксуют при температуре 4900-510°С и избыточном давлении от 1,5 до 3,5 ати. Полученный нефтяной кокс после выгрузки измельчают до размеров частиц менее 100 мкм, смешивают с порошком гидроксида калия в массовом соотношении КОН : УМ = 3 : 1 и карбонизируют при температуре от 745 до 755°С со скоростью нагрева от 5 до 6°С/мин. В инертной атмосфере азота с выдержкой при конечной температуре в течение от 55 до 65 мин. После активации продукт охлаждают в инертной атмосфере азота до комнатной температуры, выгружают и промывают сначала раствором соляной кислоты концентрацией 0,8-1,2 М, затем водой для удаления остатков щелочи из продуктов реакции до нейтрального значения рН промывных вод и сушку УМ при 105-120°С до постоянной массы. Удельная площадь поверхности активного УМ, определенная по методу БЭТ, представлена в таблице 1.

Таблица 1 - Удельная площадь поверхности активного углеродного материала, полученного при использовании гудрона, асфальта, тяжелой сланцевой смолы, тяжелого газойля каталитического крекинга в качестве сырья замедленного коксования
Вид сырья УМ Параметры коксования Скорость нагрева печи, °С/мин Температура активации УМ, °С Время проведения активации, мин Температу-ра сушки, °С Концентрация раствора соляной кислоты, М Удельная площадь поверхности активного УМ, м2 Выход активного УМ, %
Давление (избыт.), ати Температура, °C
Гудрон 1,4 510 5 745 65 105 0,8 2290-2066 71
1,5 500 5 745 60 110 1,0 2302-2080 78
2,5 495 6 750 55 115 1,1 1674-1702 76
3,5 505 5 755 60 110 0,9 1168-1051 72
3,6 490 6 750 65 120 1,2 1148-1027 70
Асфальт 1,4 490 6 750 65 120 1,2 1588-1420 65
1,5 495 5 745 60 110 1,0 1599-1428 70
2,5 505 5 755 60 105 0,9 1247-1168 67
3,5 500 5 745 65 115 1,1 1163-1029 69
3,6 510 6 750 55 105 0,8 1143-1011 62
Тяжелая сланцевая смола 1,4 510 6 755 65 120 1,2 1012-978 69
1,5 500 6 750 60 110 1,1 1036-994 74
2,5 495 5 745 60 115 0,9 844-838 75
3,5 505 5 750 55 110 1,0 1190-1049 78
3,6 490 5 755 65 105 0,8 1155-1034 70
Тяжелый газойль каталити-ческого крекинга 1,4 490 6 745 55 105 0,8 1635-1511 72
1,5 500 6 745 60 110 1,0 1677-1554 75
2,5 505 5 750 60 115 1,1 1506-1504 73
3,5 495 5 755 65 110 0,9 1383-1378 72
3,6 510 5 745 55 120 1,2 1380-1372 66

Предлагаемый способ получения активных углеродных материалов позволяет использовать сырье низкого качества в процессе замедленного коксования для получения нефтяного кокса, после активации которого получают высокопористый углеродный материал с высокой удельной площадью поверхности. При этом УМ, полученный при низком избыточном давлении замедленного коксования, показывает наилучшие результаты по показателю удельной площади поверхности, что делает его перспективным материалом для использования в качестве сорбента или носителя катализатора. Способ увеличивает сырьевую базу для получения пористых углеродных материалов и не требует проведения дополнительных стадий карбонизации.

Способ получения углеродного пористого материала, который осуществляется следующим образом: исходное сырье, в качестве которого используют гудрон, асфальт, тяжелую сланцевую смолу, тяжелый газойль каталитического крекинга, подвергают замедленному коксованию при температуре от 495 до 505 °С и избыточном давлении от 1,5 до 3,5 ати с получением нефтяного кокса, затем полученный нефтяной кокс измельчают и смешивают его с порошком гидроксида калия в массовом соотношении 3:1, карбонизацию смеси проводят при температуре от 745 до 755 °С, далее промывают раствором соляной кислоты концентрацией от 0,8 до 1,2 М, затем водой до нейтрального значения рН промывных вод, после этого сушат при температуре от 105 до 120 °С с получением углеродного пористого материала с удельной площадью поверхности от 800 до 2300 м2/г.



 

Похожие патенты:

Изобретение относится к химической промышленности и может быть использовано при нанесении покрытий на поверхность изделий, предназначенных для машиностроения, авиации, космонавтики, энергетики. В качестве исходных компонентов используют металлосодержащий порошок и оксид графена в объёмном соотношении (1:1)÷(5:1).

Настоящее изобретение относится к способу совместного синтеза метанола, аммиака и монооксида углерода, а также к установке для его осуществления. Предлагаемый способ включает следующие стадии: а) синтез метанола посредством каталитической конверсии первого синтез-газа (12), содержащего водород и оксиды углерода, б) синтез аммиака посредством каталитической конверсии второго синтез-газа (25), представляющего собой аммиачный подпиточный газ, содержащий водород и азот, и в) синтез монооксида углерода посредством окисления содержащего метан потока.
Изобретение предназначено для техники, связи, строительства, жилищно-коммунального хозяйства и может быть использовано при изготовлении корпусов, силовых конструкций, арматуры, основы для производства санирующих рукавов, вставок, ремонтных комплектов, конструкционных изделий – уголков, тавров, двутавров, швеллеров, а также предметов декоративно-прикладного назначения.

Группа изобретений относится к установке для разделения газов и способу разделения газов. Установка 2 для разделения газов в соответствии с одним воплощением содержит первый адсорбер 6, содержащий адсорбент gate-типа для адсорбции первого газа; второй адсорбер 10, соединенный с первым адсорбером посредством второго двухпозиционного клапана V1 и содержащий адсорбент ленгмюровского типа для адсорбции первого газа.

Изобретение относится к области выращивания кристаллов и может быть использовано для получения пленок алмаза большой площади на подложках из кремния. Способ непрерывного выращивания полупроводниковых пленок алмаза включает нагрев порошка алмаза 5 в графитовом контейнере в среде вакуума с осаждением пленки алмаза 8 на поверхности кремния, при этом под нижней поверхностью контейнера посредством бобин 2, 9 перемещают ленту из графитовой фольги 3 с предварительно полученным слоем мультикристаллического кремния, днище контейнера выполняют в виде приваренного к его граням слоя 7 углеродной ткани с саржевым плетением, нагрев порошка алмаза осуществляют до температуры 1050°С графитовым нагревателем 6, затем создают разность потенциалов между корпусом контейнера и подающей бобиной 2 с упомянутой лентой 3, а ленту с полученной пленкой алмаза 8 наматывают на приемную бобину 9.

Изобретение относится к устройству получения озона с помощью электрического разряда. Генератор озона состоит из корпуса и установленных в нем электродов, выполненных в виде цилиндрических трубок, образующих пучок в виде правильного шестигранника.

Изобретение относится к жидкому органическому носителю водорода, представляющему собой смесь азоторганических соединений, содержащих ароматические С5-С6-циклы, способных в присутствии катализаторов присоединять атомы водорода, имеющую более низкие тепловые эффекты реакций гидрирования-дегидрирования компонентов, причем смеси содержат по крайней мере одно соединение, выбранное из ряда: индол, карбазол, и по крайней мере одно соединение, выбранное из ряда: акридин, пиридин, фенантридин, хинолин, причем для бинарной системы соотношения компонентов выбраны из ряда 25:75% масс., 50:50% масс., 75:25% масс., а для системы из трех компонентов первый компонент взят в количестве не более 30% масс., второй компонент взят в количестве не более 30% масс., третий компонент - остальное до 100% масс.

Изобретение относится к комплексному способу окислительной дегидрогенизации алканов и производства водорода, в котором диоксид углерода из отходящего газа секции установки короткоцикловой адсорбции (УКА) установки генерации водорода (УГВ), а также алканы из любого известного источника направляются в установку окислительной дегидрогенизации (ОДГ) для производства высококачественных олефинов, таких как этилен, пропилен и бутен.

Изобретение относится к углеродным нанотрубкам (CNT), имеющим высокую структурную однородность и низкие уровни примесей. Предложенные многостенные углеродные нанотрубки имеют однородную длину и чистоту выше 99%, причем спектры комбинационного рассеяния указанных нанотрубок имеют отношение Id/Ig примерно 0,76.

Изобретение относится к области органической химии гетероциклических соединений, а именно к 1,9-морфолино-1,9-дигидро-(С60-Ih)[5,6]фуллерену формулы (1), который может быть использован в качестве прекурсора лекарственных веществ, и к способу его получения. Способ заключается во взаимодействии фуллерена С60 с 2-аминоэтанолом при мольном соотношении С60:2-аминоэтанол, равном 1:1-4, на воздухе, при комнатной температуре, в среде толуол:ДМФА=1:0.2 (объемное соотношение) при воздействии ультразвука в течение 1 ч и дальнейшем перемешивании на магнитной мешалке в течение 20-48 ч.

Изобретение относится к химической и горнодобывающей промышленности и может быть использовано при детектировании алмазов методом рентгенолюминесцентной сепарации. Сначала люминофор обрабатывают реагентом, повышающим его гидрофобность, в качестве которого используют водный раствор ксантогената калия или олеата натрия. Затем готовят композицию, содержащую органическую жидкость и люминофор на основе силиката цинка, путем диспергирования обработанного люминофора в органической жидкости из ряда, включающего мазут флотский, керосин и дизельное топливо, и последующего дополнительного диспергирования в водной фазе, в качестве которой используют раствор гексаметафосфата натрия или тринатрийфосфата с образованием водоорганической эмульсии, содержащей конгломераты капель указанной органической жидкости и люминофора. Для закрепления люминофоров на поверхности алмазов их смесь с сопутствующими минералами обрабатывают приготовленной композицией. Изобретение позволяет повысить прочность и селективность закрепления люминофорсодержащих композиций на поверхности кристаллов алмазов, что обеспечивает избирательное детектирование слабо и аномально светящихся алмазов методом рентгенолюминесцентной сепарации. 1 ил., 4 табл.
Наверх