Оптическая щелочно-алюмо-боратная стеклокерамика с ионами хрома

Изобретение относится к оптическому материаловедению и может быть использовано при создании твердотельных лазеров, включая волоконные лазеры, и люминесцентных оптических материалов. Заявленная оптическая щелочно-алюмо-боратная стеклокерамика относится к калий-литий-алюмо-боратной системе с ионами трехвалентного хрома и имеет следующий состав (мол.%): Li2O 0-25; Al2O3 5-35; K2O 0-20; B2O3 30-90; Sb2O3 0-6; Cr2O3 0,005-0,4; NH4F 0-5; NH4F⋅HF 0-5,5; NH4H2PO4 0-10. Технический результат - увеличение квантового выхода и времени жизни люминесценции материала, а также увеличение прозрачности в видимой области спектра оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома. 1 пр., 6 ил.

 

Изобретение относится к оптическому материаловедению и может быть использовано при создании твердотельных лазеров, включая волоконные лазеры, и люминесцентных оптических материалов.

Известен один из наиболее распространенных и мощных импульсных лазеров - лазер на синтетическом монокристалле рубине (Al2O3:Cr3+). Кристалл рубина в таком лазере является активным элементом, генерирующими центрами которого являются ионы Cr3+ (Справочник по лазерам / под ред. А.М. Прохорова. В 2-х томах. Т.I. - М.: Сов. радио, 1978. - 504 с.). Недостатками этого оптического материала являются дороговизна и высокие требования к чистоте исходных реактивов, высокие температуры синтеза кристаллов - более 2000 градусов, трудоемкий и длительный процесс выращивания кристаллов, а также сложность их дальнейшей обработки из-за высокой твердости. Лазерные элементы на основе монокристалла (стержни, пластины) изготавливаются только методом шлифовки и полировки. Вытяжка лазерных волокон, а также использование технологий прессования и молирования для монокристаллов не возможны, вследствие нарушения стехиометрии кристалла при использовании таких технологий.

Известна оптическая стеклокерамика с ионами хрома системы SiO2- Al2O3-MgO-K2O, содержащая нанокристаллы форстерита с ионами Cr3+ и Cr4+(M. Yu. Sharonov, A.B. Bykov, S. Owen, V. Petricevic, and R.R. Alfano. Spectroscopic study of transparent forsterite nanocrystalline glass-ceramics doped with chromium // J. Opt. Soc. Am. B, V. 21, No. 11 (2004), P. 2046-2052). Недостатком данного материала является высокая температура синтеза (1600°С) и высокая температура стеклования (750-900°С), при которой происходит формирование и рост кристаллической фазы. Это усложняет изготовление стеклокерамики и увеличивает ее себестоимость. Недостатком является также то, что часть ионов хрома находится в четырехвалентном состоянии, что уменьшает интенсивность люминесценции в видимой области спектра. Недостатком является более узкий интервал прозрачности материала в видимой области спектра за счет того, что край фундаментальной полосы поглощения стеклокерамики лежит в спектральном интервале 500-600 нм.

Известна оптическая наностеклокерамика с ионами хрома, выбранная в качестве прототипа (патент RU №2658109, МПК G02B 1/02, дата приоритета 07.04.2017, дата публикации 19.06.2018). Данная оптическая наностеклокерамика с ионами хрома относится к литий-калий-алюмоборатной системе с ионами трехвалентного хрома и имеет следующий состав (мол.%): Li2O 0-15,0; Al2O3 20,0-30,0; K2O 10,0-20,0; B2O3 40,0-60,0; Sb2O3 0-6,0; Cr2O3 0,05-0,2. Недостатками этого оптического материала является его низкий уровень прозрачности в видимом диапазоне спектра, маленький квантовый выход и короткие времена жизни люминесценции.

Решается задача увеличения квантового выхода и времени жизни люминесценции материала, а также увеличения прозрачности в видимой области спектра оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома.

Сущность заявляемого технического решения заключается в том, что оптическая щелочно-алюмо-боратная стеклокерамика относится к калий-литий-алюмо-боратной системе с ионами трехвалентного хрома и имеет следующий состав (мол.%): Li2O 0-25; Al2O3 5-35; K2O 0-20; B2O3 30-90; Sb2O3 0-6; Cr2O3 0,005-0,4; NH4F 0-5; NH4F⋅HF 0-5,5; NH4H2PO4 0-10.

Наши эксперименты показали, что в оптической щелочно-алюмо-боратной стеклокерамике системы K2O-Li2O-Al2O3-B2O3 ионы хрома находятся в трехвалентном состоянии и входят в состав нанокристаллов LiAl7B4O17:Cr3+. Данная оптическая щелочно-алюмо-боратная стеклокерамика синтезируется при температуре 1300-1400°С, а формирование и рост нанокристаллов LiAl7B4O17:Cr3+ происходит в процессе двухстадийной термической обработки: первичной, при температуре 400-450°С в течение 1-10 часов и вторичной, при температуре 580-700°С в течение 10-600 минут.

Достоинствами предлагаемой оптической щелочно-алюмо-боратной стеклокерамики являются высокий квантовый выход и время жизни люминесценции по сравнению с прототипом. Достоинством также является более высокий уровень прозрачности в видимой области спектра в сравнении с прототипом.

Совокупность признаков, изложенных формуле, характеризует оптическую щелочно-алюмо-боратную стеклокерамику с ионами хрома системы K2O- Li2O-Al2O3-B2O3.

Изобретение иллюстрируется следующими фигурами, где на:

фиг. 1 показана фотография оптического щелочно-алюмо-боратного стекла,

фиг. 2 показаны фотографии оптического щелочно-алюмо-боратного стекла с содержанием Cr2O3 до термических обработок (а), после первичной и вторичной термической обработки (б), а также монокристалл синтетического рубина (в),

фиг. 3 показаны фотография люминесценции оптического щелочно-алюмо-боратного стекла с содержанием Cr2O3 до термических обработок (а) и оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома после первичной и вторичной термической обработки (б), а также фотография люминесценции монокристалла синтетического рубина (в). Длина волны возбуждения люминесценции 365 нм,

фиг. 4 показаны показаны спектры коэффициента поглощения прототипа (а) и оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома после двухстадийной термической обработки (б),

фиг. 5 показаны спектры люминесценции прототипа (а) и оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома после двухстадийной термической обработки (б), а также спектр люминесценции монокристалла синтетического рубина (в). Длина волны возбуждения люминесценции 532 нм,

фиг. 6 показаны кривые затухания люминесценции на длине волны 700 нм прототипа (а) и оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома после двухстадийной термической обработки (б), а также кривая затухания люминесценции монокристалла синтетического рубина на длине волны 694 нм (в). Длина волны возбуждения люминесценции 532 нм.

Сущность изобретения раскрывается на примере, который не должен рассматриваться экспертом как ограничивающий притязания изобретения.

Сведения, подтверждающие возможность осуществления изобретения.

Пример 1

Для реализации изобретения синтезируют оптическую щелочно-алюмо-боратную стеклокерамику с ионами хрома, на основе стекла калий-литий-алюмо-боратной системы, следующего состава (мол.%): Li2O 17,5; Al2O3 25; K2O 7,5; B2O3 50; Sb2O3 1; Cr2O3 0,1.

Для синтеза исходного стекла используют реактивы класса Ч, ЧДА, ХЧ и ОСЧ. Для создания восстановительных условий при синтезе в состав шихты вводят NH4F⋅HF с концентрацией 3,3 мол. %. Плавление шихты осуществляют при температуре 1300-1400°С в воздушной атмосфере, с перемешиванием расплава платиново-родиевой мешалкой. Синтез производят в корундовых тиглях. При проведении синтеза используют лабораторные высокотемпературные печи фирмы Gero с отливкой в металлические формы и кварцевые или корундовые тигли. После синтеза проводят отжиг стекла в муфельной печи от 400°С до комнатной температуры.

Фотография синтезированного оптического щелочно-алюмо-боратного стекла показана на фиг. 1. Сразу после синтеза щелочно-алюмо-боратное стекло оптически прозрачное и имеет насыщенную зеленую окраску. Для формирования в стекле нанокристаллов LiAl7B4O17:Cr3+ проводят первичную и вторичную термические обработки. Температуры термических обработок определяют с помощью дифференциальной сканирующей калориметрии синтезированного оптического щелочно-алюмо-боратного стекла. Для обнаружения оптимальных параметров термообработки определяют температуру стеклования и пика кристаллизации некоторых составов при помощи дифференциального сканирующего калориметра STA 449F1 Jupiter фирмы Netzsch с точностью ±10°С. Измельченное в порошок стекло массой 20-50 мг помещают в платиновый тигель и сканируют в интервале температур 30-700°C со скоростью 10°C/мин. Режим первичной термической обработки, соответствующий области стеклования синтезированного оптического щелочно-алюмо-боратного стекла, состоит из нагрева образца до 400-450°С и выдержки его в течение 1-10 часов при заданной температуре. Режим вторичной термической обработки, соответствующий области кристаллизации синтезированного оптического щелочно-алюмо-боратного стекла, состоит из нагрева до 580-700°С ранее термически обработанного образца и выдержки его при заданной температуре в течение 10-600 минут. Длительность термообработки была определена экспериментальным путем. Первичная и вторичная термическая обработка производится в муфельных печах фирмы Nabertherm с программным управлением при температурах выше температуры стеклования составов. На фиг. 2 показаны фотографии оптического щелочно-алюмо-боратного стекла с содержанием Cr2O3 до термических обработок (а), после первичной и вторичной термической обработки (б), а также монокристалл синтетического рубина (в). Из фиг. 2 видно, что после двухстадийной термической обработки в оптическом щелочно-алюмо-боратном стекле с содержанием Cr2O3 формируются нанокристаллы LiAl7B4O17:Cr3+, оптическое щелочно-алюмо-боратное стекло становится оптической щелочно-алюмо-боратной стеклокерамикой и приобретает красный цвет, характерный для ионов Cr3+ в кристаллической матрице. На фиг. 3 показаны: фотография люминесценции оптического щелочно-алюмо-боратного стекла с содержанием Cr2O3 до термических обработок (а) и оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома после первичной и вторичной термической обработки (б), а также фотография люминесценции монокристалла синтетического рубина (в). Длина волны возбуждения люминесценции 365 нм. Из фиг. 3 видно, что оптическая щелочно-алюмо-боратная стеклокерамика с ионами хрома после двухстадийной термической обработки демонстрирует достаточно интенсивную люминесценцию, схожую с люминесценцией монокристалла синтетического рубина, при облучении ультрафиолетовым излучением, тогда как оптическое щелочно-алюмо-боратное стекло с содержанием Cr2O3 до термических обработок не люминесцирует. На фиг. 4 показаны: спектры коэффициента поглощения прототипа (а) и оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома после двухстадийной термической обработки (б). Регистрация спектров поглощения исходных и прошедших термическую обработку образцов производится при комнатной температуре с помощью двухлучевого спектрофотометра Lambda 650 (Perkin Elmer) в диапазоне длин волн 300-800 нм с шагом 1 нм. Из фиг. 4 видно, что в спектре коэффициента поглощения оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома присутствуют две полосы поглощения, характерные для ионов Cr3+ в кристаллическом окружении. Спектральные измерения показали, что край фундаментальной полосы поглощения синтезированной щелочно-алюмо-боратной стеклокерамики лежит в спектральном интервале 250-380 нм. Видно, что уровень поглощения прототипа в полтора раза больше, чем у оптической щелочно-алюмо-боратной стеклокерамики после двухстадийной обработки. На фиг. 5 показаны: спектры люминесценции прототипа (а) и оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома после двухстадийной термической обработки (б), а также спектр люминесценции монокристалла синтетического рубина (в). Длина волны возбуждения люминесценции 532 нм. Спектры люминесценции регистрировались на люминесцентном спектрофлуориметре LS 55 (Perkin Elmer). Из фиг. 5 видно, что спектры люминесценции оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома (а, б) располагаются в той же спектральной области, что и спектр люминесценции монокристалла синтетического рубина, что говорит о кристаллическом окружении ионов Cr3+. Интенсивность люминесценции нормирована на значение квантового выхода: для монокристалла синтетического рубина квантовый выход составляет 90%, для оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома после двухстадийной термической обработки квантовый выход составляет 50%, а для прототипа - 40%. Видно, что интенсивность люминесценции и квантовый выход оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома после двухстадийной термической обработки выше, чем у прототипа. На фиг. 6 показаны: кривые затухания люминесценции на длине волны 700 нм прототипа (а) и оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома после двухстадийной термической обработки (б), а также кривая затухания люминесценции монокристалла синтетического рубина на длине волны 694 нм (в). Длина волны возбуждения люминесценции 532 нм. Кривые затухания регистрировались с помощью SpectraPro 300i монохроматора (Princeton Instruments), детектора видимого излучения на кремниевой основе и Infiniium 4-Channel Oscilloscope осциллографа (Agilent). На основе этих кривых затухания можно рассчитать, что время жизни люминесценции монокристалла синтетического рубина составляет порядка 3,3 мс, время жизни люминесценции оптической щелочно-алюмо-боратной стеклокерамики с ионами хрома после двухстадийной термической обработки составляет 7,5 мс, а для прототипа - 5,3 мс.

Таким образом, формирование нанокристаллов с ионами хрома в стекле проводится в два этапа, по сравнению с прототипом. Это увеличивает значения квантового выхода и времени жизни люминесценции стеклокерамики с ионами хрома, а также повышает уровень прозрачности синтезированной щелочно-алюмо-боратной стеклокерамики в видимой области спектра в сравнении с прототипом.

Оптическая щелочно-алюмо-боратная стеклокерамика с ионами хрома, отличающаяся тем, что дополнительно содержит NH4F 0-5 мол.% , NH4F⋅HF 0-5,5 мол.%, NH4H2PO4 0-10 мол.% при следующем соотношении компонентов, мол.%:

Li2O 0-25
Al2O3 5-35
K2O 0-20
B2O3 30-90
Sb2O3 0-6
Cr2O3 0,005-0,4



 

Похожие патенты:

Изобретение относится к офтальмологическим устройствам, таким как контактные линзы. Офтальмологическое устройство образовано способом, включающим: (a) обеспечение первой реакционноспособной композиции, содержащей: (i) инициатор полимеризации, который способен при первой активации формировать две или более свободнорадикальные группы, по меньшей мере одна из которых дополнительно может активироваться при последующей активации; (ii) одно или более этиленненасыщенных соединений; и (iii) поперечно-сшивающий агент; (b) подвергание первой реакционноспособной композиции первой стадии активации так, что первая реакционноспособная композиция полимеризуется на ней с образованием поперечно-сшитой субстратной сети, содержащей ковалентно связанный активируемый инициатор свободнорадикальной полимеризации; (c) приведение в контакт поперечно-сшитой субстратной сети с композицией для прививки, содержащей одно или более этиленненасыщенных соединений, причем приведение в контакт проводят в таких условиях, что композиция для прививки проникает в поперечно-сшитую субстратную сеть и является более концентрированной на поверхности поперечно-сшитой субстратной сети, чем в сердцевине; и (d) активацию ковалентно связанного активируемого инициатора свободнорадикальной полимеризации в поперечно-сшитой субстратной сети таким образом, что композиция для прививки полимеризуется в этом месте с поперечно-сшитой субстратной сетью.

Изобретение может быть использовано при создании твердотельных лазеров, включая волоконные лазеры, и люминесцентных оптических материалов. Люминесцентная щелочно-германатная стеклокерамика с четырехвалентными ионами марганца является стеклокерамикой, в матрице которой сформированы кристаллы Li2Ge7O15 в процессе термической обработки при температуре 540-700°С в течение 1-10 часов, которая содержит MnO2 0,0005-2 мол.

Изобретение относится к нелинейно-оптическим терагерцовым материалам, а именно к нанокерамике на основе нетоксичных и пластичных галогенидов серебра, прозрачных в терагерцовой, миллиметровой, инфракрасной и видимой области (область спектра от 0,1 до 10,0 ТГц, что соответствует длинам волн от 3000,0 до 30,0 мкм) без окон поглощения и с высокой прозрачностью.

Изобретение относится к радиационно стойким оптическим терагерцовым материалам, конкретно к терагерцовой нанокерамике на основе галогенидов серебра и одновалентного таллия, предназначенной для ядерной физики, фотоники, лазерной и ИК волоконной оптики, с выходом в оптическое изделие до 90 %. Нанокерамика выполнена на основе бромида серебра и дополнительно содержит йодид серебра и йодид одновалентного таллия при следующем соотношении ингредиентов, мас.%: бромид серебра 75,0-80,0; йодид серебра 15,0-5,0, йодид одновалентного таллия 10,0-15,0.

Изобретение может быть использовано для изготовления осветительных приборов, экранов для проекционного телевидения и поверхностно-излучающих устройств. Полимерная композиция для изготовления светорассеивающих изделий содержит прозрачную полимерную матрицу, характеризующуюся показателем преломления от 1,35 до 1,65, первые рассеивающие частицы на основе полибутилакрилата и вторые рассеивающие частицы, отличные по химическому составу от первых рассеивающих частиц.

Изобретение относится к системам дополненной реальности, более конкретно к системе дополненной реальности для аттракциона для катания. Система дополненной реальности для аттракциона для катания включает в себя датчик отслеживания посетителя, выполненный с возможностью определения положения посетителя, проектор, выполненный с возможностью проецирования визуального образа, полупрозрачное зеркало, выполненное с возможностью отражения визуального образа в качестве визуального образа дополненной реальности, и контроллер, включающий в себя процессор и память.

Изобретение относится к области оптико-электронного приборостроения и касается способа изготовления светопоглощающих элементов оптических систем на подложках из алюминиево-магниевого сплава. Способ включает в себя предварительную обработку подложки из алюминиево-магниевого сплава травлением ее в водном растворе смеси азотной и фтористоводородной кислот.

Способ включает напыление, осуществляемое путем электронно-лучевого испарения материала покрытия в вакууме и осаждения паров на поверхности подложки при вращении подложек. Контроль процесса напыления путем измерения спектра пропускания покрытия производят комбинированной системой широкополосного оптического контроля, включающей в себя прямой оптический контроль, осуществляемый на каждом обороте подложки вокруг оси вакуумной камеры, и косвенный оптический контроль по образцу-свидетелю, расположенному на той же высоте, что и подложки, и вращающемуся вокруг оси вакуумной камеры.

Изобретение относится к технике проекционных систем отображения информации и может быть использовано для бортовых индикаторов на лобовом стекле коллиматорного типа. Система содержит источник изображения, находящийся в фокальной плоскости силового комбайнера, который наклонен к горизонтальной оси визирования.

Изобретение относится к способу наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления, заключающемуся в том, что с помощью пресса при повышенной температуре в атмосфере инертного газа, либо в вакууме, указанный прозрачный объект размещают на по меньшей мере одной пластине из иммерсионного порошка, в состав которого входит кристаллический материал, имеющий абсолютный показатель преломления n более 2.1, и вдавливают указанный прозрачный объект в упомянутую по меньшей мере одну пластину, на гладкой поверхности по меньшей мере одной пластины формируют по меньшей мере одно оптическое окно, осуществляют наблюдение внутренней структуры указанного прозрачного объекта посредством ввода оптического излучения внутрь прозрачного объекта сквозь сформированное по меньшей мере одно оптическое окно.

Изобретение относится к производству керамических изделий радиотехнического назначения. Технический результат изобретения заключается в повышении качества изделий из стеклокерамики литийалюмосиликатного состава.
Наверх