Способ очистки зольного графита


C01P2006/80 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2777765:

Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) (RU)

Изобретение относится к технологии получения малозольного графита, который может быть использован в качестве конструкционного материала в атомной энергетике, теплотехнике, для изготовления тиглей для плавки металлов, для получения многокомпонентного стекла, трубчатых нагревателей, а также является исходным сырьем для получения коллоидного графита, оксида графита и расширенного графита. Способ очистки зольного графита включает его фторирование путем смешивания с водным раствором бифторида аммония. Затем проводят термическую обработку реакционной смеси при 150-160°С в течение 2,5-3,0 ч при массовом соотношении графита и бифторида аммония, равном 1:0,40-0,45. Профторированный продукт, охлажденный до комнатной температуры, промывают водой, смешивают с раствором бисульфата аммония и подвергают эту смесь термообработке при 250-260°С в течение 2-3 ч. После охлаждения продукта до комнатной температуры его распульповывают в воде, фильтруют, промывают водой непосредственно на фильтре и высушивают при 60-70°С. Изобретение позволяет повысить эффективность способа за счет упрощения технологической схемы, уменьшения продолжительности осуществления, снижения энергозатрат и расхода бифторида аммония. 1 з.п. ф-лы, 2 пр.

 

Изобретение относится к технологии углеграфитовых материалов, в частности, к получению малозольного графита, который может быть использован в качестве конструкционного материала в атомной энергетике, теплотехнике, для изготовления тиглей для плавки металлов, многокомпонентного стекла, трубчатых нагревателей, а также как исходное сырье для получения коллоидного графита, окиси графита и расширенного графита.

Известен способ получения малозольного графита [SU 1599303, опубл. 1990.10.15], предусматривающий спекание порошка графитового флотоконцентрата с кальцинированной содой Na2CO3 при 900°С, промывку и фильтрацию продукта спекания водой при рН 7-8, обработку полученной суспензии 5% серной кислотой H2SO4, ее магнитогидродинамическую обработку при напряженности магнитного поля 60-110 кА/м и перемешивании со скоростью 2-8 м/с, дополнительную промывку при том же значении рН с фильтрацией и высушиванием очищенного продукта. В результате получают графит с зольностью 0,22-0,26%. Недостатками известного способа являются его высокая энергоемкость, обусловленная использованием высокотемпературного процесса спекания графитового флотоконцентрата с кальцинированной содой Na2CO3, и высокое содержание золы в конечном продукте, свидетельствующее о недостаточно высокой степени его очистки.

Известен способ очистки природного графита [RU 2141449, опубл. 1999.11.20], предусматривающий смешивание порошка графита с водным раствором щелочи, преимущественно с 40-50% раствором NaOH, спекание полученной реакционной смеси при 350°С в течение 3 ч при перемешивании, промывку полученного спека в пульсационной колонне пульсирующим потоком 5,0-7,5% азотной кислоты HNO3, подаваемым противоточно со скоростью 1,7-3,0 м/ч и частотой пульсации 25-35 импульсов в минуту при расходе кислоты около 5 л/кг графита, и последующую промывку водой в таком же пульсирующем режиме. Осадок отделяют на нутч-фильтре и высушивают при 200°С. Зольность графита уменьшается с 7% до 0,04-0,48%. Как видно, зольность графита после очистки остается относительно высокой, что является недостатком известного способа.

Известен способ очистки графита с зольностью 7%, полученного в результате флотации природного графита [RU 2602124, опубл. 2016.11.10], включающий фторирование исходного сырья и его термическую обработку, согласно которому графит перемешивают с водным раствором бифторида аммония в соотношении, обеспечивающем получение густой тестообразной массы, которую нагревают со скоростью ~1 град/мин до температуры 190-200°С, выдерживают при этой температуре 30 минут, затем увеличив скорость нагревания до ~2-5 град/мин, повышают температуру до 400°С и выдерживают реакционную смесь при достигнутой температуре в течение 2 часов. Полученный продукт охлаждают до комнатной температуры и повторно обрабатывают водным раствором бифторида аммония с получением тестообразной массы, которую снова нагревают до температуры 190-200°С и выдерживают при этой температуре в течение 2 часов. После охлаждения до комнатной температуры полученный продукт выщелачивают при 70°С в течение 1 часа либо 10% раствором соляной кислоты при отношении Т:Ж=1:8, либо 15% раствором азотной кислоты при Т:Ж=1:5, затем фильтруют, промывают осадок водой до нейтральной реакции и высушивают с получением очищенного графита. Известный способ обеспечивает практически полное удаление примесей, в том числе, свободного кварца и алюмосиликатов, с получением графита чистотой 99,97-99,98%. Однако достаточно высокая (до 400°С) температура двухстадийной термообработки реакционной смеси, содержащей БФА, с учетом ступенчатого нагрева и выдержки при промежуточной температуре, а также проведение процесса кислотного выщелачивания при нагревании (70°С) требуют дорогостоящего коррозионностойкого аппаратурного оформления, включающего реакторы из графита или платины, что в значительной мере усложняет и удорожает известный способ, снижает его рентабельность. Отрицательно сказывается на рентабельности известного способа также необходимость решения экологической проблемы, связанной с образованием значительных объемов жидких отходов в виде кислых растворов.

В качестве наиболее близкого к предлагаемому выбран один из вариантов способа очистки зольного графита, описанного в патенте РФ №2740746, опубл. 2021.01.20, на изобретение «Способ очистки зольного графита (варианты).

Согласно варианту известного способа, выбранному в качестве прототипа, реакционную смесь очищаемого зольного графита с водным раствором бифторида аммония подвергают термообработке при 60-70°С в течение 4-6 ч. После чего охлажденный до комнатной температуры продукт обрабатывают десятикратным по объему 2% раствором БФА, затем отфильтровывают с одновременным промыванием непосредственно на фильтре новой порцией 2% раствора БФА. Отфильтрованный и промытый упомянутым раствором продукт смешивают с раствором бисульфата аммония NH5SO4 (БСА) и прокаливают при 350-370°С в течение 4,0-4,5 ч. После охлаждения до комнатной температуры прокаленный продукт распульповывают в воде, отфильтровывают с одновременным промыванием водой и направляют на сушку, после чего получают графит с содержанием основного вещества не ниже 99,90%.

К недостаткам известного способа следует отнести недостаточно высокую эффективность и рентабельность, которые являются результатом термообработки реакционной смеси очищаемого графита с БФА при невысокой температуре, которая не обеспечивает необходимой полноты фторирования примесей, содержащихся в продукте, что вызывает необходимость дополнительной двукратной обработки с применением БФА, усложняющей известный способ и увеличивающей расход дорогостоящего реагента; кроме того, отрицательный вклад, снижающий эффективность и рентабельность известного способа, дают многочасовая продолжительность этапа термообработки с применением БФА и высокая энергоемкость этапа термообработки с применением БСА.

Задачей изобретения является создание эффективного высокорентабельного и технологически несложного способа очистки зольного графита.

Технический результат предлагаемого способа заключается в повышении его эффективности и рентабельности за счет упрощения технологической схемы с уменьшением продолжительности осуществления, а также за счет снижения расхода БФА.

Указанный технический результат достигают способом очистки зольного графита, предусматривающим его фторирование путем смешивания с водным раствором бифторида аммония, термическую обработку подготовленной реакционной смеси с последующим охлаждением полученного продукта до комнатной температуры, его промывку и термообработку с бисульфатом аммония, с последующим охлаждением, промывкой и высушиванием, в котором, в отличие от известного, термическую обработку реакционной смеси зольного графита с бифторидом аммония проводят в интервале температур 150-160°С в течение 2,5-3,0 часов при массовом соотношении зольного графита и бифторида аммония, равном 1:0,40-0,45, профторированный продукт, охлажденный до комнатной температуры, промывают водой, смешивают с раствором бисульфата аммония и подвергают эту смесь термообработке при температуре 250-260°С в течение 2-3 часов, после охлаждения полученного продукта до комнатной температуры его распульповывают в воде, фильтруют, промывают водой непосредственно на фильтре и высушивают при 60-70°С.

В предпочтительном варианте осуществления предлагаемого способа массовое соотношение очищаемого графита и бисульфата аммония на стадии термической обработки их смеси преимущественно составляет 1: (0,80-0,87).

Процесс осуществляют следующим образом.

Зольный графит с зольностью 5-7%, полученный в результате флотации природного графита, перемешивают с бифторидом аммония NH4(HF2) (БФА), растворенным в небольшом количестве воды с получением густой тестообразной массы, для этого исходные компоненты берут в массовом соотношении БФА: графит = (0,40-0,45): 1, и перемешивают до полной однородности.

С другой стороны, выбор указанного соотношения определяется тем, что при использовании меньшего количества БФА не обеспечивается полное удаление кремния из очищаемого графита, а увеличение этого количества с выходом за пределы заявляемого интервала концентраций не приводит к улучшению показателей очистки, при этом чревато излишним расходом дорогостоящего реактива.

Подготовленную реакционную смесь подвергают термообработке при 150-160°С в течение 2,5-3,0 часов.

Как оказалось, заявляемый в предлагаемом способе температурный режим термообработки очищаемого зольного графита с БФА обеспечивает наиболее полное фторирование основных содержащихся в нем примесей и, соответственно, высокую степень очистки.

Полученный продукт фторирования, содержащий графит и фторидные соединения примесей, преимущественно кремния, кальция, железа, алюминия и магния, оставляют для охлаждения до комнатной температуры (20-24°С), после чего промывают водой, отфильтровывают и соединяют с бисульфатом аммония, смешанным с небольшим количеством воды, соблюдая массовое соотношение БСА : графит = (0,80-0,87):1, и тщательно перемешивают. Реакционную смесь очищаемого графита с БСА подвергают термообработке при температуре 250-260°С в течение 2-3 часов. После охлаждения полученного продукта до комнатной температуры, его распульповывают в воде, отфильтровывают и непосредственно на фильтре промывают водой.

Отфильтрованный и промытый графит высушивают при температуре 60-70°С.

В очищенном таким образом графите содержание основного вещества составляет не менее 99,95%.

Примеры конкретного осуществления способа

Предварительно готовили фторирующий агент с использованием бифторида аммония. Для этого смешивали хорошо растворимый бифторид аммония (аммоний фтористый кислый) марки ЧДА с чистотой не менее 99% с небольшим количеством воды. Подлежащий очистке графит, смешанный в заявляемом массовом соотношении с подготовленным фторирующим агентом, подвергали термообработке в заявляемых условиях.

Второй этап обработки профторированного и промытого водой графита проводили после его охлаждения до комнатной температуры с использованием бисульфата аммония (БСА), предварительно смешанного с небольшим количеством воды.

Содержание примесей в графите определяли по остаточной зольности, в соответствии с ГОСТ 17818.4-90, согласно которому определяли остаток, полученный после озоления навески графита при температуре 900-1000°С.

Навеску графита помещали в фарфоровый тигель, предварительно прокаленный в электропечи при температуре (900±100)°С до постоянной массы, постепенно нагревали до (900±100)°С и выдерживали при этой температуре не менее 1 часа. Термообработку вели дробно, по 15 мин, при этом каждый раз охлаждали тигель в эксикаторе и взвешивали, пока разница в двух полученных результатах не оказывалась меньше 0,001 г. Для расчета брали последнее показание взвешивания.

Массовую долю зольного остатка (X) в % подсчитывали по формуле:

где m1 - масса навески графита с тиглем после прокаливания, г;

m2 - масса пустого тигля, г;

m3 - масса навески графита, г.

Соответственно чистоту малозольного графита (в процентах) как результат очищающей обработки предлагаемым способом находили простым расчетом: (100-Х)%.

Пример 1

Навеску 10 г зольного графита с зольностью 7%, полученного в результате флотации природного графита, перемешивали с 4 г бифторида аммония NH4HF2, растворенными в 7 мл воды.

Приготовленную густую тестообразную массу нагревали во фторопластовом стакане до 150°С и выдерживали при указанной температуре в течение 2,5 часов. Профторированный продукт, остывший до 22°С, распульповывали в воде, затем его профильтровали, промыли водой непосредственно на фильтре, после чего перемешали с 15 мл раствора, содержащего 8,7 г бисульфата аммония (1:0,87), который предварительно приготовили путем добавления к раствору, содержащему 5 г сульфата аммония в 15 мл воды, эквимолярного количества (3,8 г) серной кислоты. Полученную реакционную массу нагрели до 250°С и выдерживали при достигнутой температуре в течение 2 часов. После охлаждения полученного продукта до комнатной температуры его распульповывали в воде, затем профильтровали и промыли водой непосредственно на фильтре. Промытый продукт высушили при 60°С.

Чистота полученного таким образом малозольного графита, которую нашли по методике, описанной в ГОСТ 17818.4-90, составила 99,95%.

Пример 2

Навеску 10 г зольного графита с зольностью 7%, полученного в результате флотации природного графита, перемешивали с 4,5 г БФА, растворенными в 7 мл воды. После тщательного перемешивания приготовленную густую тестообразную массу поместили во фторопластовый стакан и выдержали при температуре 160°С в течение 3,0 часов. Полученный продукт, охлажденный до 20°С, распульповывали в воде, после чего профильтровали и промыли водой непосредственно на фильтре, после этого перемешали с 15 мл раствора, содержащего 8 г бисульфата аммония (1:0,80), который предварительно приготовили путем добавления к раствору, содержащему 4,6 г сульфата аммония в 15 мл воды, эквимолярного количества (3,5 г) серной кислоты. Полученную реакционную массу нагрели до 260°С и выдержали при достигнутой температуре в течение 3 часов. После охлаждения полученного продукта до комнатной температуры его распульповывали в воде, профильтровали, промыли водой непосредственно фильтре и высушили при 60°С.

Чистота полученного малозольного графита, определенная в соответствии с ГОСТ 17818.4-90, составила 99,97%.

1. Способ очистки зольного графита, предусматривающий его фторирование путем смешивания с водным раствором бифторида аммония, термическую обработку подготовленной реакционной смеси с последующим охлаждением полученного продукта до комнатной температуры, его промывку и термообработку с бисульфатом аммония с последующим охлаждением, промывкой и высушиванием, отличающийся тем, что термическую обработку реакционной смеси зольного графита с бифторидом аммония проводят в интервале температур 150-160°С в течение 2,5-3,0 ч при массовом соотношении зольного графита и бифторида аммония, равном 1:0,40-0,45, профторированный продукт, охлажденный до комнатной температуры, промывают водой, смешивают с раствором бисульфата аммония и подвергают эту смесь термообработке при температуре 250-260°С в течение 2-3 ч, после охлаждения полученного продукта до комнатной температуры его распульповывают в воде, фильтруют, промывают водой непосредственно на фильтре и высушивают при 60-70°С.

2. Способ по п. 1, отличающийся тем, что массовое соотношение графита и бисульфата аммония на стадии термической обработки их смеси составляет 1:(0,80-0,87).



 

Похожие патенты:

Изобретение относится к химической промышленности, электрохимии и энергетике и может быть использовано при изготовлении анодных материалов твердооксидных топливных элементов (ТОТЭ) электрохимических устройств. Сначала готовят смесь порошков оксида или карбоната церия и оксида алюминия в необходимом стехиометрическом количестве по отношению к массе получаемого алюмината церия.

Изобретение относится к технологии получения слоистого композита дисульфида молибдена с углеродом, который может быть использован для промышленного производства электродных масс натрий-ионных аккумуляторов (НИА), смазочных материалов, осмотических мембран для нефтехимии. Слоистый композит углерод-дисульфид молибдена получают с использованием в качестве исходного источника углерода вискозного волокна, которое пропитывают раствором аммония молибденовокислого четырехводного (NH4)6Mo7O24⋅4H2O, высушивают, карбонизируют при температурах 630-950°С с выдержкой при 220°С, 280°С и 350°С в течение не менее 15 мин при каждой температуре, а после волокно подвергают сольвато-термической обработке в растворе тиомочевины NH2CSNH2 при температуре 75°С в течение 4 ч с последующей сушкой.

Изобретение относится к технологии получения химического соединения состава (NH4)3Sc0,995Eu0,005(S04)3, которое может быть использовано в качестве люминофора для бесконтактного определения температуры. Предлагается двойной сульфат скандия и аммония, допированный европием, состава (NH4)3Sc0,095Eu0,005(SO4)3.

Изобретение относится к химической технологии получения неорганического соединения - молибдата натрия-висмута со структурой шеелита, который является перспективным материалом в качестве матрицы для люминесцентных устройств, таких как светодиоды белого свечения, газоразрядных мембран, сепараторов, сенсоров и топливных элементов.

Изобретение относится к технологии изготовления композитных материалов, содержащих наночастицы платины и ее сплавы, используемых в качестве анода и катода в электролизерах и топливных элементах с протоннообменной мембраной. Способ получения платиносодержащих катализаторов осуществляют путём формирования наночастиц платины в процессе химического восстановления соединений металла в жидкой реакционной среде при воздействии ультрафиолетовым облучением, при этом реакционная среда содержит углеродный носитель, в качестве которого используют углеродные дисперсные материалы с удельной поверхностью выше 50 м2/г, растворитель – этиленгликоль, восстановитель, прекурсор платины – водный раствор гексагидрата хлорплатиновой кислоты, а также водный раствор щелочного агента, а ультрафиолетовое облучение проводят в течение 30-180 мин перед началом химического восстановления или в процессе химического восстановления при температуре от 20 до 160°С.
Изобретение относится к получению сложных оксидов металлов для электронной и СВЧ техники, фотоники, энергетики, для получения магнитных и магниторезистивных композиций, высокотемпературных сверхпроводников, в качестве покрытий для летательных аппаратов, упрочняющих добавок к строительным и конструкционным материалам.

Изобретение относится к химической промышленности и может быть использовано при нанесении покрытий на поверхность изделий, предназначенных для машиностроения, авиации, космонавтики, энергетики. В качестве исходных компонентов используют металлосодержащий порошок и оксид графена в объёмном соотношении (1:1)÷(5:1).

Изобретение относится к технологи получения сверхрешеток из нанокристаллов свинцово-галогенидного перовскита, допированного ионами кадмия CsСdxPb1-xBr3, (0<x<1), которые могут быть использованы как компоненты оптоэлектронных приборов, работающих в синем диапазоне длин волн света. Способ получения сверхрешеток из нанокристаллов свинцово-галогенидного перовскита включает добавление октадецена к порошку безводного карбоната цезия Cs2CO3, выдерживание полученной смеси при температуре 100°C в течение 30 мин, добавление олеиновой кислоты и нагревание до 180°C с образованием олеата цезия, охлаждение полученного раствора до 25°C за 30 мин, введение октадецена в бромид свинца PbBr2, создание вакуума с последующим перемешиванием при 100°C в течение 30 мин, введение в эту смесь олеиламина и олеиновой кислоты и ее нагрев до 180°C, смешивание полученных растворов олеата цезия и бромида свинца с образованием коллоидного раствора нанокристаллов свинцово-галогенидного перовскита в октадецене, его охлаждение до 15°C на ледяной бане, очистку от октадецена центрифугированием, редиспергирование осадка нанокристаллов, повторное центрифугирование коллоидного раствора и удаление надосадочного раствора, редиспергирование осадка нанокристаллов в толуоле с образованием коллоидного раствора нанокристаллов свинцово-галогенидного перовскита в толуоле, который прокапывают на предварительно очищенную кремниевую подложку с образованием сверхрешеток из нанокристаллов свинцово-галогенидного перовскита при испарении толуола, при этом перед очисткой в коллоидный раствор нанокристаллов свинцово-галогенидного перовскита CsPbBr3 в октадецене дополнительно добавляют октадецен, центрифугирование во время очистки осуществляют с ускорением 1000g в течение 5-10 мин, далее удаляют надосадочный раствор, редиспергирование осадка нанокристаллов проводят в октадецене, к нему добавляют заранее приготовленную смесь, полученную перемешиванием четырехводного бромида кадмия CdBr2•4H2O с октадеценом при температуре 130°C со скоростью 1000 об/мин в перчаточном боксе, заполненном атмосферой азота 99,999%, в течение 40 мин и добавлением олеиламина и олеиновой кислоты с нагревом до 180°C и охлаждением до 25°C за 30 мин, полученный состав вакуумируют и перемешивают со скоростью 1000 об/мин при комнатной температуре в течение 10 мин, нагревают до 150°C и выдерживают в течение 10 мин, охлаждают до 25°C за 30 с, в результате чего получают коллоидный раствор нанокристаллов состава CsСdxPb1-xBr3, (0<x<1) в октадецене, повторное центрифугирование проводят с ускорением 1000g в течение 5 мин, а после удаления надосадочного раствора в результате редиспергирования осадка нанокристаллов в толуоле получают концентрированный коллоидный раствор нанокристаллов свинцово-галогенидного перовскита CsСdxPb1-xBr3 в толуоле, раствор после редиспергирования вновь центрифугируют в толуоле с ускорением 1000g в течение 5 мин и отбирают надосадочный коллоидный раствор нанокристаллов состава CsСdxPb1-xBr3 в толуоле, который прокапывают на упомянутую кремниевую подложку, предварительно очищенную в атмосфере кислородной плазмы под давлением 0,3-0,4 Мбар с мощностью генератора 50-100 Вт в течение 1 мин.

Изобретение относится к химической технологии получения высокочистого оксида магния, используемого в фармацевтической, косметической и пищевой промышленности, в производстве керамики, стекол, оптических материалов, электронных материалов, катализаторов, полимерных материалов, трансформаторной стали. Высокочистый оксид магния имеет удельную поверхность, определенную методом БЭТ, в диапазоне от 5 до 70 м2/г, средний размер частиц (d50), определенный методом лазерной дифракции, не более 5 мкм, массовую долю примесей каждого из элементов Pb, Cd, As, Hg не более 0,1 ppm, массовую долю примесей каждого из элементов Ва, Zn, Ti, Mn, Со, Mo, V, Sb, Sr не более 1 ppm, массовую долю примесей каждого из элементов Al, F не более 5 ppm, массовую долю примесей каждого из элементов Р, Cr, Ni, K, Li не более 10 ppm, массовую долю Fe не более 50 ppm, массовую долю Si не более 0,01%, массовую долю примесей каждого из элементов Са, В не более 0,02%, массовую долю сульфатов не более 0,02%, массовую долю примеси элемента Na не более 0,05%, массовую долю примеси хлоридов не более 0,05%, и включает в себя первичные частицы и агломераты, состоящие из первичных частиц.

Изобретение может быть использовано при изготовлении керамических изоляторов и вращателей Фарадея, предназначенных для устранения обратного поляризованного излучения в лазерах. Сначала смешивают в молярной пропорции: оксид тербия Tb4O7 - не менее 80% и остальное – по меньшей мере один из оксидов иттрия, скандия, циркония, лантана или лантаноидов.

Изобретение относится к технике получения графеносодержащих суспензий путем сдвиговой эксфолиации графита в жидкости и может быть использовано в различных отраслях промышленности при модифицировании графеном пластичных смазок, эпоксидных смол, бетонов и т.д. Технической задачей изобретения является повышение эффективности эксфолиации графита и повышение степени преобразования графита в графен.
Наверх