Способ получения алюмината церия



Способ получения алюмината церия
Способ получения алюмината церия
C01P2002/34 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2777104:

Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН) (RU)

Изобретение относится к химической промышленности, электрохимии и энергетике и может быть использовано при изготовлении анодных материалов твердооксидных топливных элементов (ТОТЭ) электрохимических устройств. Сначала готовят смесь порошков оксида или карбоната церия и оксида алюминия в необходимом стехиометрическом количестве по отношению к массе получаемого алюмината церия. В полученную смесь добавляют восстановитель – оксалат аммония в соотношении 1:1 на моль алюмината церия. Затем проводят ступенчатый отжиг: вначале при 1000°С в течение 12 ч, а затем при 1400°С в течение 96 ч в потоке азота со скоростью 5 л/мин. Изобретение позволяет снизить температуру синтеза анодного материала на основе алюмината церия CeAlO3 и упростить аппаратурное оформление процесса. 3 ил., 3 пр.

 

Изобретение относится к получению алюмината церия (CeAlO3), который может быть использован в качестве анодного материала для твердооксидных топливных элементов (ТОТЭ) электрохимических устройств, применяемых в электроэнергетике.

К анодным материалам для ТОТЭ предъявляются требования по высокой электронной и ионной проводимости, химической устойчивости в восстановительной среде, хорошему спеканию с электролитом при отсутствии химического взаимодействия, а также коэффициенту термического расширения близкому к электролиту, высокой скорости электродной реакции, высокой термомеханической стабильности и высокой пористости.

Несмотря на большое разнообразие существующих электролитов для ТОТЭ, требуется индивидуальный подбор химически совместимых с ними электродных материалов, поэтому разработка новых способов получения анодных материалов остается актуальной.

Известны два основных способа синтеза CeAlO3 - это твердофазный и метод сжигания раствора. Основная проблема в синтезе CeAlO3, где церий присутствует в степени окисления +3, заключается в стабилизации этой степени окисления, поскольку для церия на воздухе устойчива степень окисления +4.

В способе сжигания раствора в качестве исходных веществ используются мочевина и глицин в разных соотношениях, а также нитраты алюминия и церия [Aruna S.T, Kini N.S, Satish S., Rajam K.S., Synthesis of nanocrystalline CeAlO3 by solution-combustion route // Materials Chemistry and Physics - 2010. - №119. - P. 485-489]. Вначале готовится раствор с определенными пропорциями топлива (органические реагенты) и нитратов в минимальном количестве воды, который затем вносится в предварительно разогретую до 500°С печь. Реакцию проводят в цилиндрическом алюминиевом тигле, где раствор сгорает через несколько минут, образуя губчатую массу. Подбирая оптимальное соотношение глицина и мочевины, можно получить однофазный CeAlO3. Однако следует отметить, что получение керамического образца из порошка, полученного сжиганием раствора, также требует температуры выше 1000°С и восстановительной атмосферы, поскольку CeAlO3 окисляется на воздухе выше 600°С. Таким образом, для получения анодного материала на основе CeAlO3 требуется аппаратное оформление такое же, как при твердофазном методе синтеза.

В твердофазном способе получения керамики CeAlO3 [X. Wang, H. Yamada, K. Nishikubo and C.-N. Xu. Synthesis and Electric Property of CeAlO3 Ceramics // Japanese Journal of Applied Physics, Vol. 44, No. 2, 2005, pp. 961-963] в качестве исходных веществ использовались альфа-Al2O3 оксид алюминия (99,999%, Kojundo Chemical Lab. Co.), нитрат церия Ce(NO3)3⋅5.3H2O (99,9%, Kojundo Chemical Lab. Co.) и борная кислота H3BO3 (99,99%, Aldrich Chemical) в качестве флюса. Эти реагенты смешивались в агатовой ступке в этаноле, высушивались и прокаливались при 900°С в течение 4 ч в восстановительной атмосфере (Ar + 5% H2). После прокаливания смесь была снова перетерта, а затем спрессована в таблетки диаметром 10 мм. Таблетки спекались при 1350-1600°C в течение 4 ч в восстановительной атмосфере (Ar + 5% H2). Керамика на основе CeAlO3 с пористостью 40 % получена при 1600°С без добавления флюса H3BO3, а керамика с пористостью 6 % была получена при 1450°С с добавлением флюса 5% мол. H3BO3.

Вышеописанный твердофазный способ получения керамики CeAlO3 характеризуется высокой температурой синтеза (1600°С без использования флюса - борной кислоты Н3ВО3). При этом, для снижения температуры синтеза до 1400°С требуется использование борной кислоты Н3ВО3, но это приводит к снижению на 1,5 порядка электропроводности керамики (с 10-7 до 5⋅10-9 См/см при 25°С).

Задачей изобретения является разработка способа получения анодного материала для ТОТЭ - керамики CeAlO3, в которой церий присутствует в степени окисления +3, при снижении температуры синтеза.

Для этого предложен способ получения алюмината церия, характеризующийся тем, что алюминат церия CeAlO3 синтезируют из смеси порошков оксида или карбоната церия и оксида алюминия в необходимом стехиометрическом количестве по отношению к массе получаемого алюмината церия, в которую добавляют восстановитель - оксалат аммония в соотношении 1:1 на моль алюмината, синтез осуществляют с использованием ступенчатого отжига, который вели вначале при температуре 1000°С в течение 12 часов, а затем при 1400°С в течение 96 часов в потоке азота со скоростью 5 л/мин.

Понижение температуры синтеза, вероятно, обусловлено использованием карбоната или оксида церия, а не нитрата церия, при разложении которого выделяются диоксид азота и кислород, создающие окислительную атмосферу.

Использование оксалата аммония обусловлено тем, что оксалат аммония при нагревании разлагается с образованием газообразных продуктов NH3, CO2 и СО, которые создают восстановительную атмосферу. При соотношении оксалата аммония 1:1 на моль алюмината обеспечивается необходимая концентрация восстановителя, при которой сохраняется степень окисления церия +3, и окисление до степени окисления +4 не происходит.

Таким образом, предложенный способ позволяет понизить температуру синтеза с 1600°С до 1400°С без использования борной кислоты Н3ВО3 в качестве флюса. Понижение температуры с 1600°С до 1400°С, и оксалата аммония - в качестве восстановителя, упрощает аппаратурное оформление процесса, а также позволяет уменьшить его стоимость.

Новый технический результат, достигаемый заявленным способом, заключается в снижении температуры синтеза анодного материала на основе алюмината церия, упрощении аппаратурного оформления процесса и снижении его стоимости.

Изобретение иллюстрируется рисунками, где на фиг. 1 приведена рентгенограмма CeAlO3 с обработкой полнопрофильным анализом; на фиг. 2 - электронные микрофотографии керамики CeAlO3; на фиг. 3 - результаты энергодисперсионного микроанализа керамики CeAlO3.

Для синтеза заявляемого материала использовали порошки Ce2(CO3)3 или Ce2O3, или CeO2 «чда» и Al2O3 «чда», которые в необходимом стехиометрическом количестве по отношению к массе получаемого алюмината церия были перетерты в агатовой ступке в среде этилового спирта. Для введения восстановителя перед каждым отжигом порошки перемешивали с оксалатом аммония в соотношении 1:1 на моль алюмината. Перед отжигом образцы прессовали в таблетки в гидравлическом прессе при давлении на манометре ~40 атмосфер. Корундовую лодочку с образцами в виде прессованных таблеток помещали в трубчатую печь из непористой муллит-кремнеземистой керамической трубки с пробками из вакуумной резины и карбид-кремниевыми нагревательными стержнями. Ступенчатый отжиг вели вначале при температуре 1000°С в течение 12 часов, а затем при 1400°С в течение 96 часов в потоке азота со скоростью 5 л/мин. На выходе этот поток газа пропускали через жидкостный затвор с низколетучей жидкостью - дибутилфталатом во избежание диффузии воздуха противотоком, а затем газ уходил в вытяжную вентиляцию.

Пример 1.

Для синтеза 10 г CeAlO3 использовали навески: 10,5517 г Ce2(CO3)3 и 2,4751 г Al2O3. Также из расчета в мольном соотношении 1:1 CeAlO3 / (NH4)2С2О4⋅Н2О добавляли примерную навеску оксалата аммония гидрата 6,64 г на 10 г CeAlO3.

Навески исходных веществ были перетерты в агатовой ступке в среде этилового спирта, а затем спрессованы в несколько таблеток диаметра 2 см гидравлическим прессом при давлении на манометре ~40 атмосфер. Корундовую лодочку с образцами помещали в трубчатую печь, в которой вели ступенчатый отжиг: при температуре 1000°С - 12 ч, далее при 1400°С - 96 ч в потоке азота со скоростью 5 л/мин.

Пример 2.

Для синтеза 10 г CeAlO3 использовали навески: 7,5249 г Ce2O3 и 2,4751 г Al2O3. Также из расчета в мольном соотношении 1:1 CeAlO3 / (NH4)2С2О4⋅Н2О добавляли примерную навеску оксалата аммония гидрата 6,64 г на 10 г CeAlO3.

Навески исходных веществ были перетерты в агатовой ступке в среде этилового спирта, а затем спрессованы в несколько таблеток диаметра 2 см гидравлическим прессом при давлении на манометре ~40 атмосфер. Корундовую лодочку с образцами помещали в трубчатую печь, в которой вели ступенчатый отжиг: при температуре 1000°С - 12 ч, далее при 1400°С - 96 ч в потоке азота со скоростью 5 л/мин.

Пример 3.

Для синтеза 10 г CeAlO3 использовали навески: 7,8917 г CeO2 и 2,4750 г Al2O3. Также из расчета в мольном соотношении 1:1 CeAlO3 / (NH4)2С2О4⋅Н2О добавляли примерную навеску оксалата аммония гидрата 6,64 г на 10 г CeAlO3.

Навески исходных веществ были перетерты в агатовой ступке в среде этилового спирта, а затем спрессованы в несколько таблеток диаметра 2 см гидравлическим прессом при давлении на манометре ~40 атмосфер. Корундовую лодочку с образцами помещали в трубчатую печь, в которой вели ступенчатый отжиг: при температуре 1000°С - 12 ч, далее при 1400°С - 96 ч в потоке азота со скоростью 5 л/мин.

Таким образом, заявляемый способ получения анодного материала - алюмината церия позволяет понизить температуру синтеза до 1400°С и не использовать в качестве флюса борную кислоту Н3ВО3. Указанные преимущества предлагаемого способа имеют существенное значение для его использования в промышленных условиях.

Способ получения алюмината церия, характеризующийся тем, что алюминат церия CeAlO3 синтезируют из смеси порошков оксида или карбоната церия и оксида алюминия в необходимом стехиометрическом количестве по отношению к массе получаемого алюмината церия, в которую добавляют восстановитель – оксалат аммония в соотношении 1:1 на моль алюмината церия, синтез осуществляют с использованием ступенчатого отжига, который ведут вначале при температуре 1000°С в течение 12 ч, а затем при 1400°С в течение 96 ч в потоке азота со скоростью 5 л/мин.



 

Похожие патенты:

Изобретение относится к полимерам, содержащим фторсульфонильные группы. Предложен полимер, содержащий фторсульфонильные группы, имеющий звенья формулы u1, где RF1 и RF2 представляют собой C1-3 перфторалкиленовую группу.

Изобретение относится к полимерам, содержащим фторсульфонильные группы. Предложен полимер, содержащий фторсульфонильные группы, имеющий звенья формулы u1, где RF1 и RF2 представляют собой C1-3 перфторалкиленовую группу.

Изобретение относится к химической промышленности и может быть использовано для производства деталей из композиционных термопластичных или термореактивных материалов; электродов в электрохимических процессах, топливных ячейках, батареях или аккумуляторах; анодов для катодной защиты; коллекторов электрического тока для анодов или катодов литиевых, натриевых, литиево-серных или литиево-полимерных батарей; электродных элементов для свинцово-кислотных или перезаряжаемых литиевых батарей; суперконденсаторных электродных элементов; каталитических подложек для очистки воздуха или для литиево-воздушных батарей.

Изобретение относится к твердооксидным электродным материалам на основе никелита неодима, которые могут быть использованы в среднетемпературных электрохимических устройствах, таких как твердооксидные топливные элементы, электролизеры, сенсоры и др. Твердооксидный электродный материал содержит никелит неодима, модифицированный цирконием состава Nd2Ni0.9Zr0.1O4+δ.

Изобретение относится к области электротехники, а именно к электродному материалу для электрохимических устройств, и может быть использовано в среднетемпературных электрохимических устройствах на основе протонопроводящих электролитов, таких как твердооксидные топливные элементы, электролизеры, сенсорах.

Изобретение относится к электродным материалам на основе никелита празеодима, которые могут быть использованы в среднетемпературных электрохимических устройствах, таких как твердооксидные топливные элементы, электролизеры, сенсоры и других на основе протонпроводящих электролитов, принадлежащих семейству церато-цирконатов бария.

Изобретение относится к анодам твердооксидных топливных элементов, к композициям, используемым при изготовлении анодов, к способам изготовления анодов. Анод для твердооксидного топливного элемента содержит: матрицу, содержащую легированный оксид металла; и электрокатализатор, причем электрокатализатор содержит пористые частицы, поддерживаемые матрицей, причем пористые частицы содержат каталитический материал парового риформинга, заключенный внутри пор пористых частиц.

Изобретение относится к области электротехники, а именно к элементам батарей среднетемпературных электрохимических устройств для получения электроэнергии, и может быть использовано для создания твердооксидных топливных элементов (ТОТЭ). Согласно изобретению, ячейка содержит несущую трубчатую основу, представляющую собой коллекторный слой из композитного материала анода общей формулы Ni/La1-хSrхScO3-δ, на который последовательно нанесены тонкие функциональные слои композитного материала анода общей формулы Ni/La1-хSrхSc1-yMeyO3-δ, электролита на основе скандата лантана, допированного стронцием, функционального слоя композитного материала катода общей формулы LaNi1-zFezO3/La1-хSrхSc1-yMeyO3-δ, а также коллекторный слой катода общей формулы LaNi1-zFezO3, где х = 0.05÷0.2 ат.%, y = 0.01÷0.15 ат.%, z = 0.1÷0.5 ат.%, Me – Fe, Co или Ni.

Изобретение относится к формированию единичных многослойных ячеек, которые могут быть использованы в качестве основы твердооксидных топливных элементов (ТОТЭ) или твердооксидных электролизеров (ТОЭ). Согласно изобретению, на слой электролита ячейки с противоположных сторон нанесены слои катода и анода из одного и того же железосодержащего оксидного материала, при этом слои анода и катода выполнены из материала состава Nd0.6Ba0.4Fe0.9Cu0.1O3–δ.

Изобретение относится к высокопористым электродным материалам на основе никелата неодима, которые могут быть использованы в качестве воздушных электродов для электрохимических устройств на основе протонпроводящих электролитов, включая твердооксидные топливные элементы, сенсоры и электролизеры. Материал представляет собой никелат неодима, допированный барием и фтором, состава: Nd1,9Ba0,1NiO4+δFx, где x = 0,05.

Изобретение относится к технологии получения слоистого композита дисульфида молибдена с углеродом, который может быть использован для промышленного производства электродных масс натрий-ионных аккумуляторов (НИА), смазочных материалов, осмотических мембран для нефтехимии. Слоистый композит углерод-дисульфид молибдена получают с использованием в качестве исходного источника углерода вискозного волокна, которое пропитывают раствором аммония молибденовокислого четырехводного (NH4)6Mo7O24⋅4H2O, высушивают, карбонизируют при температурах 630-950°С с выдержкой при 220°С, 280°С и 350°С в течение не менее 15 мин при каждой температуре, а после волокно подвергают сольвато-термической обработке в растворе тиомочевины NH2CSNH2 при температуре 75°С в течение 4 ч с последующей сушкой.
Наверх