Устройство для сжатия газов и сгустков замагниченной плазмы

Изобретение относится к области исследований изоэнтропического сжатия, в частности к устройствам сжатия газов и сгустков замагниченной плазмы. Устройство для сжатия газов и сгустков замагниченной плазмы содержит заряд взрывчатого вещества, охватывающий цилиндрическую оболочку с полостью. Между зарядом взрывчатого вещества и оболочкой выполнен вакуумный герметичный зазор толщиной, обеспечивающей нагружение внутренней границы цилиндрической оболочки слабыми волнами сжатия и изоэнтропический режим разгона оболочки без её разрушения. При этом цилиндрическая оболочка выполнена из меди или бериллия. Техническим результатом является обеспечение возможности однородного сжатия газов или сгустков замагниченной плазмы до мегабарных давлений, при этом исключается снижение темпа термоядерных реакций при сжатии замагниченной плазмы за счет подавления ударно-волнового выброса частиц металла с оболочки. 1 ил.

 

Изобретение относится к области исследований изоэнтропического сжатия веществ, в частности, к устройствам сжатия газов и сгустков замагниченной плазмы.

Использование экспериментальной техники мощных ударных волн для изучения экстремальных состояний газов, реализующихся в звездах и атмосферах планет-гигантов, является сегодня основным источником информации о поведении сильно сжатой плазмы в области высоких температур и давлений мегабарного уровня. Будучи экзотическими для земных условий, эти ультраэкстремальные состояния вполне характерны для большинства астрофизических объектов. Кроме того, с плазмой ультрамегабарного диапазона связываются перспективные энергетические проекты по управляемому термоядерному синтезу с инерционным удержанием плазмы.

Устройства сжатия сгустков замагниченной плазмы необходимы для разогрева плазмы, инжектируемой в сжимаемый объем посредством двух размещенных в торцах устройства инжекторов, за счет ее дополнительного сжатия. При этом магнитное поле, вмороженное в плазму, уменьшает тепловые потери за счет теплопроводности. В настоящее время такие системы достаточно интенсивно исследуются мировым термоядерным сообществом и обозначаются аббревиатурой MTF (Magnetized Target Fusion). Известны цилиндрические и сферические устройства для сжатия, содержащие заряд мощного взрывчатого вещества, и металлическую камеру высокого давления с газовой полостью. Основной проблемой, требующей решения для достижения высокой эффективности таких систем, является подавление поступления примесей вещества оболочки в дейтериевую или дейтерий-тритиевую плазму в процессе ее сжатия.

Таким образом, актуальной задачей является разработка устройств с минимально возможным выбросом мелкодисперсных фракций металла в замагниченную плазму. При решении данной задачи необходимо учитывать результаты специализированных исследований выделения примесей (пыли) с внутренней поверхности сжимаемой оболочки при ее разгоне в условиях воздействия интенсивных потоков энергии.

В настоящее время существуют установки, позволяющие создавать сгустки замагниченной плазмы, нагретой до температур Т>0,1 кэВ, посредством столкновения двух встречных потоков дейтериевой плазмы. Для дальнейшего продвижения по шкале температур и получения термоядерного выхода является перспективным осесимметричное обжатие плазмы, получаемой из инжектора. Организация сжатия сгустков замагниченной плазмы в сферически-симметричных конструкциях представляется сложной технической задачей, связанной с необходимостью разработки систем закрепления обжимающей оболочки и подачи плазмы в центральную полость, которые в свою очередь будут являться источниками выделения примесей металла в плазме в процессе ее сжатия.

Известно цилиндрическое устройство (патент RU №2471545 приоритет от 07.07.2011, «Цилиндрическое устройство для сжатия газов до мегабарных давлений», авторы Бликов А.О., Мочалов М.А., Огородников В.А., Комраков В.А., МПК B01J 3/08, G01N 7/00, 9/00, опубликовано 10.01.2013 №1), представляющее собой двухкаскадное специализированное цилиндрическое устройство, предназначенное для сжатия газов, в котором разгон внутренней оболочки второго каскада происходит квазиизоэнтропически через газовый симметризующий слой. Данное устройство выбрано в качестве наиболее близкого аналога.

Известное устройство обладает следующими недостатками. В данном цилиндрическом устройстве оболочка, сжимающая газ или плазму, разгоняется квазиизоэнтропически (т.е. серией слабых ударных волн), что может при определенных условиях (степень чистоты поверхности, интенсивность ударных волн) приводить к выбросу мелкодисперсных фракций металла в замагниченную плазму. Внутренний каскад известного устройства выполнен из стали, что не позволяет достигнуть необходимых электрофизических свойств в устройстве, требуемых для создания замагниченной плазмы. Наличие вдоль оси цилиндрического устройства металлического стержня исключает возможность подачи встречных потоков плазмы с их последующим взаимодействием, приводящим к образованию сгустка замагниченной плазмы с требуемым начальным состоянием.

Техническая проблема, на решение которой направлено изобретение, заключается в создании газодинамического цилиндрического устройства, в котором можно сжимать газы или сгустки замагниченной плазмы в условиях изоэнтропического режима разгона сжимающей оболочки, при этом обеспечивается минимально возможный выброс мелкодисперсных фракций металла.

Техническим результатом, на достижение которого направлено изобретение, является обеспечение возможности однородного сжатия газов или сгустков замагниченной плазмы до мегабарных давлений, исключение при этом снижения темпа термоядерных реакций при сжатии замагниченной плазмы за счет подавления ударно-волнового выброса частиц металла с оболочки.

Данный технический результат достигается тем, что в устройстве для сжатия газов или сгустка замагниченной плазмы, содержащем заряд взрывчатого вещества, охватывающий цилиндрическую оболочку с полостью, новым является то, что между зарядом взрывчатого вещества и оболочкой выполнен вакуумный герметичный зазор определенной толщины, при этом цилиндрическая оболочка имеет требуемую толщину и выполнена из металла, обладающего необходимыми физико-механическими и электрофизическими свойствами.

Вакуумный герметичный зазор между зарядом взрывчатого вещества и оболочкой обеспечивает нагружение внутренней границы цилиндрической оболочки слабыми волнами сжатия, реализуя тем самым изоэнтропический режим разгона оболочки с отсутствием ее разрушения и ударно-волнового выброса мелкодисперсных фракций металла оболочки в плазму при ее сжатии, а также роста крупномасштабных возмущений, обусловленного особенностями работы многоточечных систем инициирования взрывчатого вещества (ВВ).

Цилиндрическую оболочку выполняют из металла, обладающего необходимыми физико-механическими свойствами (сдвиговая прочность, пластичность) для подавления роста крупномасштабных и мелкомасштабных возмущений на внутренней границе оболочки, являющихся источниками асимметрии сжатия, разрушения и пыления; при сжатии сгустка замагниченной плазмы выполняют из металла, имеющего высокие электрофизические свойства в дополнении к необходимым физико-механическим свойствам.

За счет воздействия на обжимающую металлическую оболочку серии волн сжатия обеспечивается изоэнтропический режим разгона оболочки, что приводит к значительному снижению необратимого нагрева в случае сжатия газов, а также к отсутствию разрушения оболочки и подавлению ударно-волнового выброса мелкодисперсных фракций металла при сжатии сгустков замагниченной плазмы. В последнем случае отсутствует перемешивание сжатой замагниченной плазмы изотопов водорода с частицами металла на ядерном уровне, что, как следствие, исключает снижение темпа термоядерных реакций.

На фиг.1 приведен эскиз схемы предлагаемой конструкции устройства для сжатия газов и сгустков замагниченной плазмы.

Устройство для сжатия газов и сгустков замагниченной плазмы содержит заряд взрывчатого вещества (ВВ) 1, цилиндрическую оболочку 2 с центральной полостью, герметичный вакуумный зазор 3, кольца 4 и элемент конструкции 5.

Зазор 3 выполнен между зарядом ВВ 1 и оболочкой 2, Герметичность зазора 3 и его вакуумирование посредством откачки газа обеспечивается элементом конструкции 5.

Кольца 4 скрепляют и центрируют заряд ВВ 1 и цилиндрическую оболочку 2.

Цилиндрическая оболочка 2 выполнена из металла с необходимыми физико-механическими свойствами, и при необходимости высокими электрофизическими свойствами, например, меди или бериллия (Cu, Be).

Устройство для сжатия сгустка замагниченной плазмы работает следующим образом.

Предварительно на заряде ВВ 1 устанавливают систему инициирования (на фигуре не показана). После инициирования по наружной поверхности заряда ВВ 1 и распространению по его толщине детонационной волны происходит расширение продуктов взрыва ВВ в вакуумный зазор 3 достаточной толщины. После достижения продуктами взрыва наружной границы цилиндрической оболочки 2 происходит плавное нарастание давления на этой границе. Это приводит к распространению волны сжатия от наружной границы цилиндрической оболочки 2 к внутренней. Выход волны сжатия на внутреннюю границу цилиндрической оболочки 2 обеспечивает безударный плавный набор скорости оболочкой 2. В дальнейшем происходит многократное отражение воли сжатия от внутренней и наружной границ оболочки 2, тем самым, позволяя ей в изоэнтропическом режиме разгоняться к центру по тоста, сжимая содержащийся в ней газ или сгусток замагниченной плазмы.

Устройство для сжатия газов и сгустков замагниченной плазмы, содержащее заряд взрывчатого вещества, охватывающий цилиндрическую оболочку с полостью, отличающееся тем, что между зарядом взрывчатого вещества и оболочкой выполнен вакуумный герметичный зазор толщиной, обеспечивающей нагружение внутренней границы цилиндрической оболочки слабыми волнами сжатия и изоэнтропический режим разгона оболочки без её разрушения, при этом цилиндрическая оболочка выполнена из меди или бериллия.



 

Похожие патенты:

Использование: для получения синтетических поликристаллических алмазов детонационного синтеза. Сущность изобретения заключается в том, что детонационный синтез поликристаллических алмазов осуществляют взрывом заряда в центре герметичной взрывной камеры в ледяной оболочке или в водяной оболочке, а после взрыва полученную суспензию алмазов в воде извлекают из камеры в отстойник, после отстоя осадок отжимают на центрифуге и подвергают очистке от окислов металлов и неалмазного углерода или сушат.

Изобретение относится к области исследований квазиизэнтропической сжимаемости газов в мегабарной области давлений. Устройство для исследования квазиизэнтропической сжимаемости газов содержит цилиндрический заряд взрывчатого вещества, внутри которого коаксиально последовательно установлены цилиндрические прокладка, выполненная из оргстекла или полиэтилена, первая и вторая стальные оболочки.

Изобретение относится к процессам получения синтетических поликристаллических алмазов. Способ детонационного синтеза поликристаллических алмазов осуществляют взрывом заряда в центре герметичной взрывной камеры в ледяной оболочке или в водяной оболочке.

Изобретение относится к области измерительной техники, а именно к регистрации параметров динамики ударно-индуцированного «пыления» с внутренней поверхности сферического лайнера при исследовании ее состояния/поведения при нагрузке. Устройство регистрации динамики состояния ударно нагруженной сферической поверхности лайнера включает размещенный на основании полусферический заряд взрывчатого вещества (ВВ) и датчики, регистрирующие движение лайнера, который установлен в полости заряда с возможностью формирования герметичного объема, соединенного с системой газоввода.

Изобретение может быть использовано при получении синтетических поликристаллических алмазов. Способ детонационного синтеза поликристаллического алмаза включает получение исходного продукта из высокоэнергетического взрывчатого вещества - гексогена и/или октогена и углеродсодержащего компонента - коллоидного графита или сажи.

Заявленная группа изобретений относится к химической, нефтехимической, пищевой отраслям промышленности, а именно к способу и устройству переработки высокомолекулярных соединений углерода и дисперсного минерального сырья. Способ включает подачу воздуха и газа в камеру сгорания ударно-детонационного генератора с формированием ударной детонации смеси в газодинамическом тракте генератора и созданием знакопеременной ударной волны.

Изобретение относится к производству синтетических алмазов. Устройство включает металлическую камеру 3 с графитсодержащим источником, взрывчатое вещество 9, свечу 10, электроды 11 которой соединены проводами 12 с трансформатором высокого напряжения, и емкость с водой 2, при этом камера 3 расположена на подставке над емкостью с водой 2, свеча 10 размещена во взрывчатом веществе 9, а в качестве графитсодержащего источника использован графитовый электрод 6, расположенный в теплоизоляционном материале 5 и соединенный с источником питания через первое реле времени, трансформатор высокого напряжения 13 соединен с источником питания через второе реле времени, соединенное с источником питания через первое реле времени, камера 3 имеет крюк 4, за который зацеплен трос расположенной на другом конце емкости лебедки 17, соединенной с источником питания через третье реле времени, соединенное с источником питания через второе реле времени.

Изобретение относится к способам и устройствам для получения алкенов и алкинов, например, этилена и ацетилена из доступного газообразного исходного сырья, например, метана, этана, пропана и других предельных углеводородов. Предложен способ конверсии газообразного исходного сырья в алкены и алкины, в котором осуществляют подачу в проточную импульсно-детонационную трубу газообразного исходного сырья с одновременной или последующей подачей одновременно горючего и окислителя, заполнение проточной импульсно-детонационной трубы и частично или полностью проточного реактора газообразным исходным сырьем, горючим и окислителем, циклическое инициирование детонационного горения с обеспечением разогрева газообразного исходного сырья до температуры пиролиза в проточной импульсно-детонационной трубе в результате его сжатия в бегущей детонационной волне, где газообразное исходное сырье, подвергаемое сжатию и разогреву в бегущей детонационной волне, разбавлено горючим и окислителем и в проточном реакторе в результате сжатия газообразного исходного сырья в бегущей ударной волне, где газообразное исходное сырье, подвергаемое сжатию и разогреву в бегущей ударной волне, не разбавлено горючим и окислителем, или в бегущей детонационной волне, где газообразное исходное сырье, подвергаемое сжатию и разогреву в бегущей детонационной волне, разбавлено горючим и окислителем.

Изобретение относится к пищевой, нефтяной промышленности, экологии и водоочистке и может использовано для получения экологически чистой питьевой воды, обеззараживания молока и фруктовых соков, упрощения трубопроводной транспортировки нефтей и нефтепродуктов. Гидродинамическая установка содержит последовательно соединенные рабочий насос 5, выполненный с возможностью обеспечения на выходе давления, равного или превышающего 5 кг/см2, агрегат-растворитель 6, выполненный в виде трубопровода длиной (0,5-3,0) м и диаметром не менее выхода из рабочего насоса 5, конфузор 11, дезинтегратор 12.

Изобретение относится к модульной камере сжатия компрессионной системы, предназначенной для создания волн давления в текучей среде, содержащейся в камере сжатия. Модульная камера сжатия 10 содержит множество отдельных модулей 12 и множество соединительных средств 15, соединяющих между собой модули 12 для получения стенки камеры 10.
Наверх