Способ исследования состава жидких растворов электролитов

 

Использование: физико-химический анализ и исследование водных проб. Сущность изобретения: способ исследования состава жидких растворов электролитов, находящихся в ячейке из диэлектрического материала, заключается в измерении электрических характеристик электродов, опущенных в раствор электролита. В ячейку помещают одинаковые электроды. В ячейке создают постоянное магнитное поле с силовыми линиями, параллельными кратчайшей прямой между электродами. После включения постоянного магнитного поля получают кинетическую зависимость потенциал - время на основании которой определяют количественный состав раствора. 2 ил. 1 табл.

Изобретение относится к области химии и может быть использовано для физико-химического анализа водных проб.

Аналогами изобретения являются вольтамперометрические способы анализа и исследования жидких растворов электролитов. Эти способы основаны на изучении зависимости силы тока в электролитической ячейке от потенциала, погруженного в анализируемый раствор индикаторного электрода. [1] При реализации вольтамперометрических способов в анализируеый раствор помещают электроды, в анализируемый раствор вводят индифферентный электролит, затем на электроды от внешнего источника подают напряжение, в итоге получают зависимость величины тока от разности потенциалов, по которой и определяют состав раствора. Недостатком вольтамперометрических методов является повышенная сложность ячеек, в которых проводится исследование состава раствора, затрудняющая, в частности их использование непосредственно в анализируемых средах (например, в водоемах, водотоках, технологических трубопроводах, на линиях сбросов).

Аналогами предлагаемого способа являются кондуктометрические методы исследования состава растворов. Различают два вида кондуктометрии: контактную и бесконтактную. Наиболее распространены контактный никзочастотный и бесконтактный высокочастотный методы [2] В прямой кондуктометрии концентрацию электролита определяют по электропроводности его раствора. Достоинством прямой кондуктометрии является простота измерительной ячейки, позволяющей анализировать концентрированные растворы кислот и другие растворы агрессивных веществ, а также использовать этот метод для анализа проб природных и сточных вод непосредственно в точке контроля.

Основные недостатки это, во-первых, определение электропроводности (сопротивления), информативность которой недостаточна, во-вторых, необходимость пропускания электрического тока через раствор, находящийся в измерительной ячейке, накладывает ограничения на использование метода.

В бесконтактных методах измерения проводят с применением емкостных ячеек (C-ячеек) или индуктивных ячеек (L-ячеек), которые представляют собой сосуды из диэлектрика, которые, в первом случае, имеют с внешней стороны не менее двух металлических электродов или, во-втором случае, помещены в магнитное поле катушки индуктивности. Помимо C- и L-ячеек применяются их различные комбинации. Общей особенностью бесконтактных методов является то, что электроды C-ячейки и катушка индуктивности соединяются с высокочастотным генератором, то есть измерения проводятся в условиях переменного электромагнитного поля.

Основным недостатком бесконтактных методов также является определение электропроводности (сопротивления) раствора.

Аналогом изобретения является кулонометрический способ анализа. По этому способу в изучаемый раствор помещают два электрода и пропускают через него электрический ток, при этом осуществляют в растворе и на электродах электрохимические превращения, затем на основании измерения количества электричества делают вывод о составе раствора. Для кулонометрического анализа необходимо соблюдение следующих условий: электрохимическое превращение вещества должно протекать со 100% -ным выходом по току, т.е. должны отсутствовать побочные электрохимические и химические процессы. Нужны надежные способы определения количества электричества и установления момента завершения электрохимической или химической реакции. [3] Необходимость соблюдения вышеописанных условий делает непригодным кулонометрический способ для анализа неподготовленных проб природного и технологического происхождения.

Прототипом предлагаемого способа является потенциометрический способ анализа. Он основан на измерении электродвижущих сил обратимых гальванических элементов. Обычно гальванические элементы, используемые в потенциометрии, включают пару электродов, которые могут быть погружены в один и тот же раствор (элемент без переноса) или в два различных по составу раствора, имеющих между собой жидкостный контакт (элемент с переносом). Для определения концентраций ионов в растворе наиболее пригодны элементы с переносом. Такой элемент включает индикаторный электрод, действующий обратимо к иону, активность (или концентрация) которого определяется, и второй электрод вспомогательный. Вспомогательный электрод должен иметь постоянный потенциал. [4] Для определения концентрации в исследуемый раствор погружают один или оба электрода, затем, по наступлении равновесия, определяют значение электродного потенциала, после чего вычисляют концентрацию определяемого иона в растворе (Справочник по физико-химическим методам исследования объектов окружающей среды/ Аранович Г. И. Коршунов Ю.Ц. Ляликов Ю.С. справочник по физико-химическим методам исследования объектов окружающей среды Л. Судостроение, 1979).

Недостатком потенциометрического способа является необходимость включения в состав измерительного устройства специального электрода сравнения с целью создания гальванического элемента это приводит к использованию сложных, т. е. изготовленных из нескольких частей, электродов (например, ионселективных электродов).

Техническим результатом предлагаемого способа является упрощение той части измерительного устройства, которая непосредственно контактирует с исследуемым раствором; это упрощение заключается в отказе от включения в измерительную часть гальванического элемента. Результат достигается тем, что измерения проводят в ячейке из диэлектрического материала, в которую помещают электроды одинаковой природы, с помощью которых исследуют характеристики раствора; в ячейке создают постоянное магнитное поле с силовыми линиями, параллельными кратчайшей прямой между электродами, в котором и находятся эти электроды; затем сразу после включения постоянного магнитного поля измеряют изменение разности потенциалов между электродами во времени.

Отличием заявляемого способа от прототипа является то, что в прототипе потенциал измеряется после наступления равновесия в изучаемой системе, а в предлагаемом способе изучают изменение электрохимических характеристик в неравновесных условиях.

Другие существенные отличия заявляемого технического решения от известных видны из таблицы. известного технических решений".

На фиг. 1 дана схема измерительной ячейки; на фиг. 2 изменение разности потенциалов между электродами при включении постоянного магнитного поля.

Пример. Для выполнения измерения была собрана ячейка, включающая 1) стеклянную ячейку; 2) раствор; 3) отверстия для ввода электродов; 4) краник для слива раствора; 5) электроды; 6) обмотка из медного провода; 7) источник постоянного тока; 8) регистрирующее устройство.

Методика выполнения измерений заключалась в следующем.

В стеклянную ячейку помещали электроды, которые представляли собой отрезки медной проволоки, поверхность которой была предварительно зачищена наждачной бумагой. Затем ячейк у с электродами промывали исследуемым раствором, который сливался через краник 4. В опытах использовали раствор хлорида натрия в дистиллированной воде. После промывки в ячейку заливали новую порцию раствора. Затем включали в катушке постоянный ток, величина которого равнялась 0,4 А. Начиная с момента включения тока, с интервалом в 10 с измеряли разность потенциалов между электродами 5 или измеряли величину тока, или измерения сопротивление раствора. Эти измерения показали, что удобно детектировать разность потенциалов. Изменение величины разности потенциалов между электродами 5 после включения постоянного тока в катушке (т.е. после создания постоянного магнитного поля в ячейке) на примере раствора хлорида натрия с концентрацией, равной 300 г/л, показано на рис. 2.

Как показали измерения, в первые 30-60 с после включения катушки разность потенциалов оставалась приблизительно постоянной. Затем она начинала увеличиваться и после достижения максимума начинала уменьшаться до некоторой постоянной во времени величины, отличной на 0,2-0,5 мВ от исходной. Высота и площадь пика зависели от концентрации раствора, с ее уменьшением они уменьшались. В случае, если в ячейку заливали дистиллированную воду, то после включения постоянного магнитного поля пики не наблюдались.

Тот факт, что в дистиллированной воде пики не наблюдались, а в растворе электролита (NaCl) они появлялись, указывает на то, что предложенный способ можно использовать для исследования жидких растворов электролитов.

Реализация предложенного способа позволит получить измерительные устройства, в которых с изучаемым раствором будут контактировать лишь электроды простейших конструкции (например, выполненные в виде двух металлических пластин). В тоже время наиболее сложные и дорогостоящие узлы будут находиться вне контакта с раствором. Это позволяет проводить исследования растворов электролитов (воды) непосредственно в трубопроводах, технологических емкостях и водных объектах.

Формула изобретения

Способ исследования состава жидких растворов электролитов, находящихся в ячейке из диэлектрического материала, заключающийся в измерении электрических характеристик электродов, опущенных в раствор электролита, отличающийся тем, что в ячейку помещают одинаковые электроды и создают в ней постоянное магнитное поле с силовыми линиями, параллельными кратчайшей прямой между электродами, в котором находятся эти электроды, затем сразу после включения постоянного магнитного поля получают кинетическую зависимость потециал - время, на основании которой определяют количественный состав раствора.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к аналитической химии, а именно к способам проведения химического анализа жидкой пробы в наполненной растворителем реакционной трубке, и может быть использовано при проведении анализов для нужд экологии, здравоохранения, сельского хозяйства, пищевой и фармацевтической промышленности

Изобретение относится к металлургии, в частности к методам контроля содержания кислорода в шлаке при производстве стали и сплавов в электродуговых агрегатах переменного тока

Изобретение относится к методам диагностики различных патологий, связанных с нарушениями обмена метаболитов (таких как глюкоза, холестерин, лактат, мочевая кислота и др.) и может быть использовано и поэтому рентабельны в применении только для крупных клиник

Изобретение относится к селькому хозяйству и может быть использовано при диагностике питания растений в процессе выращивания и при контроле качества сельскохозяйственной продукции

Изобретение относится к исследованию структуры проводящих пористых тел путем определения электрохимических параметров и может быть использовано для определения удельной поверхности, радиуса пор и распределения поверхности по радиусам пор для пористых адсорбентов, катализаторов и электродов, применяемых в химической промышленности

Изобретение относится к электрохимическим методам анализа с использованием ионоселективных электродов и может быть использовано для повышения чувствительности и селективности способа

Изобретение относится к электроаналитической химии, а именно к способу определения мышьяка (III), включающему концентрирование мышьяка на поверхности стеклоуглеродного электрода в растворе кислоты с последующей регистрацией аналитического сигнала, при этом концентрирование мышьяка (III) проводят на поверхности стеклоуглеродного электрода, покрытого золотом, в растворе до 3,0 M в интервале потенциалов -0,40-(-0,45)B в течение 1-10 мин с последующей регистрацией производной анодного тока по времени при линейной развертке потенциала

Изобретение относится к области электрохимии, электрохимических процессов и технологий в части измерения потенциала электродов под током, а именно к способу измерения потенциала рабочего электрода электрохимической ячейки под током, основанному на прерывании электрического тока, пропускаемого между рабочим и вспомогательным электродами, и измерении текущего потенциала рабочего электрода, при этом процесс измерения текущего потенциала Eизм рабочего электрода производят относительно электрода сравнения непрерывно по времени t, затем по измеренным значениям потенциала рассчитывают первую производную от зависимости изменения текущего потенциала рабочего электрода от времени: (t)=Eизм

Изобретение относится к способу получения активированных кислого и щелочного растворов, включающему электрохимическое разделение водного раствора электролита, при этом электрохимическому разделению подвергают мочу животных и/или человека
Изобретение относится к адсорбции компонентов, а именно к способу адсорбционного концентрирования необратимо адсорбирующихся на металлах соединений путем наложения электрического поля в электрохимической ячейке, при этом перед концентрированием проводят адсорбцию на жидкометаллическом электроде из раствора, содержащего адсорбируемые соединения, при интенсивном перемешивании и потенциале электрода, обеспечивающем необратимую адсорбцию, а концентрирование после отстаивания осуществляют путем сокращения поверхности электрода с необратимо адсорбируемыми соединениями при переводе электрода из ячейки в капилляр. Изобретение относится к анализу материалов с помощью оптических методов путем адсорбции компонентов
Изобретение относится к области аналитической химии, а именно к области аналитической электрохимии, и может быть использовано при определении свойств грунтов, горных пород, строительных материалов, а также свойств поверхностей раздела фаз

Изобретение относится к составу полупроводниковых материалов, используемых в адсорбционных сенсорах для обнаружения и количественной оценки концентрации низкомолекулярных органических соединений, преимущественно кетонов в выдыхаемом людьми воздухе, и к технологии изготовления таких полупроводниковых материалов
Наверх