Унифицированный способ количественного определения флавоноидов в траве и экстракционных препаратах очанки

Изобретение относится к области фармации, а именно к унифицированному способу количественного определения суммы флавоноидов в траве трех видов очанок: очанки коротковолосистой, очанки мелкоцветной, очанки Рейтера и экстракционных препаратах очанки коротковолосистой. Способ включает использование комплексообразующего агента - 2% спиртового раствора хлористого алюминия и ионизирующего агента - 8% спиртового раствора ацетата натрия; определение окрашенного комплекса методом дифференциальной спектрофотометрии при λ = 382±2 нм; использование для расчета суммы флавоноидов удельного показателя поглощения Е1%1см = 357 ГСО цинарозида и серии разведений, индивидуальных для каждого экстракционного препарата. Технический результат: способ позволяет проводить стандартизацию лекарственного сырья и экстракционных препаратов очанки по содержанию действующих веществ (флавоноидов) и может использоваться при разработке нормативно-технической документации. 5 з.п. ф-лы, 8 табл., 1 ил.

 

Изобретение относиться к области фармации и касается количественного определения суммы флавоноидов в траве различных видов очанок и экстракционных препаратах очанки коротковолосистой.

Растения рода Очанка (о.) - это однолетние, полупаразитные травы сем. Scrophulariaceae, имеющие трудно отличимые морфолого-анатомические признаки. Они используются в народной медицине и гомеопатии для лечения воспалительных и склеротических заболеваний глаз (катаракта, глаукома, конъюнктивит, блефарит), желудочно-кишечного тракта (гепатит, колит, энтероколит), верхних дыхательных путей (бронхит, ангина, пневмония) [Растительные ресурсы СССР. Цветковые растения, их использование, семейства Caprifoliaceae - Plantaginaceae. - М.: Наука, 1990, С.139].

В ходе фитохимических исследований установлено, что основными группами действующих веществ травы о. коротковолосистой, о. мелкоцветной и о. Рейтера являются флавоноиды, иридоиды и фенолкарбоновые кислоты. Комплекс флавоноидных веществ этих растений представлен производными флавона - апигенином, лютеолином, цинарозидом [Сухинина Т.В. Фармакогностическое изучение растений рода очанка/Автореф. канд. дис. Пермь, 2002. 20 с.].

Фармакологические исследования экстракционных препаратов очанки показали наличие антимикробной, гипотензивной и противовоспалительной активности, сочетающейся с низкой токсичностью [Сухинина Т.В. Фармакогностическое изучение растений рода очанка/Автореф. канд. дис. Пермь, 2002. 20 с.]. Многолетний опыт использования в народной медицине и современные данные фармакологических исследований открывают перспективы внедрения травы очанки и экстракционных препаратов на ее основе в медицинскую практику.

Однако разработка и промышленный выпуск препаратов травы очанки затруднен из-за возможной фальсификации и использования недоброкачественного сырья, отсутствия способов промежуточного технологического контроля и оценки качества конечных продуктов. Указанные трудности обусловлены отсутствием надежного способа количественного определения действующих веществ.

Анализ патентной и научной литературы показал: прототип способа определения действующих веществ в траве различных видов очанок отсутствует. Об этом, в частности, свидетельствует отсутствие раздела определения действующих веществ в нормативно-технической документации на траву о. Ростковиуса и о. прямой в Германии [Deutschen Arcneimittel Codex, Stuttgart, 1997, A-192].

Известные способы количественного определения флавоноидов в растительных объектах не являются унифицированными и разработаны или только для сырья одного вида растений [Ярцева И.Б., Куркин В.А. Количественное определение суммы флавоноидов в траве одуванчика лекарственного//Фармация, 1996, №4, С.24-26; Самылина И.А., Евдокимова О.В., Кашникова М.В. Использование хлорида алюминия для определения суммы флавоноидов в цветках боярышника//Фармация, 1994, №6, С.42-45; Смирнова Л.П., Первых Л.Н. Количественное определение суммы флавоноидов в цветках бессмертника песчаного//Химико-фармацевтический журнал, 1998, №6, С.35-36], или только для препаратов, полученных на основе растительного сырья [Чемесова И.И., Чубарова С.Л., Саканян Е.И. и др. Спектрофотометрический метод количественной оценки содержания полифенолов в сухом экстракте из надземной части Mellilotus officinalis (L.) Pall. и в его лекарственной форме (таблетках)//Растительные ресурсы, 2000, Вып.1, Т.36, С.72-74; Кабишев К.Э., Саканян Е.И. Количественное определение суммы флавоноидных соединений в интраназальных лекарственных формах препарата ″Оксофил″ с полиэкстрактом из надземной части Oxytropis oxyphilla (Pall.) DC.// Растительные ресурсы, 2002, Вып.4, Т.38, С.120-127]. Использование этих способов для определения суммы флавоноидов в траве и экстракционных препаратах очанки не возможно из-за отличия:

- в химическом составе растений;

- в консистенции и структуре растительного материала;

- в спектральных характеристиках;

- в последовательности выполнения аналитических операций;

- в используемых государственных стандартных образцах (ГСО).

Целью настоящего изобретения является разработка унифицированного способа количественного определения, позволяющего определять сумму флавоноидов (действующих веществ):

- в сырье различных видов очанок;

- в водных извлечениях-настоях (1:10), сухих и жидких (1:2) экстрактах;

- в спиртовых извлечениях - настойках (1:5), сухих и жидких (1:2) экстрактах, субстанции, содержащей комплекс флавоноидов (фракция флавоноидов).

Для решения поставленной цели были решены следующие задачи:

- выбран доступный комплексообразующий реагент, позволяющий спектрально зафиксировать наличие флавоноидов в растениях и растительных препаратах путем образования устойчивого во времени комплексного соединения;

- определен метод спектрального обнаружения флавоноидов с комплексообразующим реагентом;

- выбрана аналитическая длина волны, позволяющая избирательно определять флавоноидные соединения;

- подобран государственный стандартный образец для пересчета суммы флавоноидов и определен его удельный показатель поглощения (Е1%1см) в условиях способа количественного определения;

- определены оптимальные условия извлечения флавоноидов из сырья (экстрагент; соотношение сырья и экстрагента; время экстракции);

- разработаны оптимальные условия количественного определения суммы флавоноидов в экстракционных препаратах очанки коротковолосистой (рабочая длина волны, навески, разведение);

- проведена метрологическая характеристика способа количественного определения флавоноидов в сырье и экстракционных препаратах.

Способ количественного определения основан на использовании реакции комплексообразования флавоноидов очанки с алюминия хлоридом (AlCl3) в присутствии натрия ацетата (CH3COONa), с последующим количественным определением этого комплекса методом дифференциальной спектрофотометрии. Дифференциальная спектрофотометрия предусматривает использование в качестве контроля испытуемый раствор без реактивов, что позволяет исключить влияние окрашенных и сопутствующих веществ, а также веществ, не образующих комплексов с реактивами. Хлористый алюминий хлорид является дешевым и доступным реагентом и используется в сочетании с ионизирующей добавкой - ацетатом натрия. Одновременное использование комплексообразующих и ионизирующих реагентов вызывает более значительное батохромное смещение полос поглощения флавоноидов очанки по сравнению с использованием только комплексообразующего реагента (Δλ=6 нм), что позволяет вести определение флавоноидного комплекса в длинноволновой части спектра, свободной от поглощения гидроксикоричных кислот.

Для определения метода спектрального обнаружения и аналитической длины волны были изучены УФ-спектры спиртовых извлечений надземной части с корнями (далее травы) трех видов очанок - о. коротковолосистой, о. мелкоцветной и о. Рейтера и государственного стандартного образца (ГСО) цинарозида (ФС 42-3150-95). Установлено, что УФ-спектры исследованных видов очанок совпадают (табл.1), в качестве примера приведены спектры очанки коротковолосиситой (см. чертеж).

Как следует из полученных данных, спектр спиртового извлечения имеет один максимум (328 нм), который незначительно смещается при добавлении в испытуемый раствор хлористого алюминия и ацетата натрия и обусловлен, вероятно, присутствием в изучаемом экстракте гидроксикоричных и ацилхинных кислот, спектр поглощения которых находиться в области 310-330 нм [Бандюкова В.А. Фенолокислоты растений, их эфиры и гликозиды//Химия природ. соединений, 1983, №2, С.271-273]. Наблюдаемый при этом гипохромный эффект не позволяет использовать метод прямого спектрофотометрирования окрашенного комплекса и данную длину волны в качестве рабочей.

Дифференциальная кривая поглощения (см. чертеж) представляет собой интегрированный спектр наложения комплекса флавоноидных веществ, содержащихся в очанке, имеет всего один максимум 382 нм и перекрывается с длинноволновой полосой ГСО цинарозида в присутствии хлористого алюминия и ацетата натрия. Так как интервал между максимумами дифференциального спектра поглощения и длинноволновой полосы поглощения стандартного образца не превышает половины полуширины полосы поглощения стандартного образца, то погрешность измерения будет не значительной [Ловцева Е.А. Совершенствование способов контроля качества лекарственных средств производных пурина N-гликозидной структуры/Автореф. канд. дис., Пятигорск, 1993. 20 с.]. Это дает возможность использовать λ=382 нм в качестве аналитической, а с учетом измерения на разных приборах значение длин волн может отличаться на ±2 нм (λ=382±2 нм) [Государственная фармакопея СССР, XI изд., М; 1987, Т.1, С.36].

Для изучения возможности использования разработанного способа количественного определения флавоноидов в анализе экстракционных препаратов о. коротковолосистой были изучены их дифференциальные УФ-спектры с хлористым алюминием и ацетатом натрия (табл.2). Как следует из полученных данных, максимумы дифференциальных кривых совпадают, что позволяет использовать λ=382±2 нм в качестве рабочей длины волны в анализе исследованных препаратов.

При разработке оптимальных условий извлечения флавоноидов из сырья использовали воду и этанол различной концентрации. Наиболее полное извлечение определяемых веществ достигалось при экстрагировании 80%-ным этанолом при соотношении сырья и экстрагента 1:80. Время полной экстракции флавоноидов 20 мин. Дальнейшее увеличение времени экстракции нецелесообразно, так как происходит значительное снижение суммы флавоноидов в исследуемых экстрактах. Данные условия извлечения одинаковы для сырья трех видов очанок - о. коротковолосистой, о. мелкоцветной и о. Рейтера. В качестве примера приведены результаты исследования травы очанки коротковолосистой (табл.3).

Для пересчета содержания суммы флавоноидов в траве очанки на цинарозид нами рассчитан (табл.4) удельный показатель поглощения (Е1%1см) комплексов растворов ГСО цинарозида и с хлористым алюминием и ацетатом натрия при аналитической длине волны 382 нм, который составляет 357,4±3,4. В связи с этим в формулу расчета нами включено теоретическое значение Е1%1см=357, позволяющее не использовать в методике ГСО цинарозида.

Унифицированный способ количественного определения суммы флавоноидов подтверждается следующими примерами.

Пример 1. Определение суммы флавоноидов в траве о. коротковолосиситой, о. мелкоцветной и о. Рейтера. Аналитическую пробу воздушно-сухого сырья измельчают до размера частиц, проходящих сквозь сито по ГОСТ 214-83 с отверстиями диаметром 2 мм. Около 0,6 г (точная навеска) сырья помещают в коническую колбу вместимостью 100 мл со шлифом, прибавляют 50 мл 80%-ного этанола. Колбу присоединяют к обратному холодильнику и нагревают на кипящей водяной бане в течение 20 мин, считая с момента закипания экстрагента. Колбу охлаждают до комнатной температуры, извлечение фильтруют через ватный тампон в плоскодонную мерную колбу вместимостью 50 мл и через этот же фильтр доводят объем раствора 80%-ным этанолом до метки. Полученное извлечение фильтруют в плоскодонную колбу через бумажный фильтр (раствор А), первые 10 мл фильтрата отбрасывают. 1 мл раствора А помещают в мерную колбу вместимостью 50 мл, добавляют 1 мл 2%-ного спиртового раствора алюминия хлорида и 1 мл 8%-ного спиртового раствора ацетата натрия, доводят объем раствора до метки 80% этанолом и перемешивают (раствор Б). Спустя 30 мин измеряют оптическую плотность раствора Б на спектрофотометре при длине волны 382 нм в кювете с толщиной поглощающего слоя 10 мм. В качестве раствора сравнения используют 1 мл раствора А, доведенного 80%-ным этанолом до метки в мерной колбе вместимостью 50 мл. Содержание суммы флавоноидов в сухой надземной части с корнями очанки в пересчете на цинарозид вычисляют по формуле:

где D - оптическая плотность исследуемого раствора; m - навеска сырья, г; V - объем раствора А, взятого для разбавления, мл; 50 - объем раствора А, мл; 50 - объем раствора Б, мл; W - потеря в массе при высушивании сырья, %; 357 - удельный показатель поглощения комплекса цинарозида с реактивами при длине волны 382 нм.

Статистическая обработка результатов количественного определения выполнена по общепринятой методике ГФ-XI [Государственная фармакопея СССР, XI изд., M., 1987, 4.1, 336 с.]. Результаты (табл.5) показали, что ошибка единичного определения с достоверной вероятностью 95% находиться в пределах 4,5-5,5%.

Проверка на отсутствие систематической ошибки, путем добавки ГСО цинарозида к навеске сырья, выполнена на траве о. коротковолосистой. Установлено, что систематическая ошибка разработанного способа отсутствует (табл.6).

Пример 2. Определение суммы флавоноидов в настоях (1:10) очанки коротковолосистой. 1 мл настоя помещают в мерную колбу вместимостью 50 мл, добавляют 1 мл 2%-ного спиртового раствора алюминия хлорида и 1 мл 8%-ного спиртового раствора ацетата натрия, доводят объем раствора до метки 80% этанолом и перемешивают (раствор А). Спустя 30 мин измеряют оптическую плотность раствора А на спектрофотометре при длине волны 382 нм в кювете с толщиной поглощающего слоя 10 мм. В качестве раствора сравнения используют 1 мл настоя, доведенного 80%-ным этанолом до метки в мерной колбе вместимостью 50 мл. Содержание суммы флавоноидов в настоях очанки коротковолосистой в пересчете на цинарозид вычисляют по формуле:

где D - оптическая плотность исследуемого раствора; а - навеска настоя, мл; 50 - объем раствора А, мл; 357 - удельный показатель поглощения комплекса цинарозида с реактивами при длине волны 382 нм.

Пример 3. Определение суммы флавоноидов в жидком спиртовом экстракте (1:2) очанки коротковолосистой. 1 мл жидкого спиртового экстракта помещают в плоскодонную мерную колбу вместимостью 25 мл и доводят объем раствора 80%-ным этанолом до метки. Полученное разведение фильтруют в плоскодонную колбу через бумажный фильтр (раствор А), первые 10 мл фильтрата отбрасывают. 1 мл раствора А помещают в мерную колбу вместимостью 50 мл, добавляют 1 мл 2%-ного спиртового раствора хлористого алюминия и 1 мл 8%-ного спиртового раствора ацетата натрия, доводят объем раствора до метки 80% этанолом и перемешивают (раствор Б). Спустя 30 мин измеряют оптическую плотность раствора Б на спектрофотометре при длине волны 382 нм в кювете с толщиной поглощающего слоя 10 мм. В качестве раствора сравнения используют 1 мл раствора А, доведенного 80%-ным этанолом до метки в мерной колбе вместимостью 50 мл. Содержание суммы флавоноидов в жидком спиртовом экстракте (1:2) очанки коротковолосистой в пересчете на цинарозид вычисляют по формуле:

где D - оптическая плотность исследуемого раствора; а - навеска сырья, г; V - объем раствора А, взятого для разбавления, мл; 25 - объем раствора А, мл; 50 - объем раствора Б, мл; 357 - удельный показатель поглощения комплекса цинарозида с реактивами при длине волны 382 нм.

Пример 4. Определение суммы флавоноидов в сухом спиртовом и сухом водном экстракте очанки коротковолосистой. Около 0,1 г (точная навеска) сухого спиртового или водного экстракта, помещают в плоскодонную мерную колбу вместимостью 25 мл, растворяют и доводят объем раствора 80%-ным этанолом до метки. Полученное разведение фильтруют в плоскодонную колбу через бумажный фильтр (раствор А), первые 10 мл фильтрата отбрасывают. 1 мл раствора А помещают в мерную колбу вместимостью 50 мл, добавляют 1 мл 2%-ного спиртового раствора хлористого алюминия и 1 мл 8%-ного спиртового раствора ацетата натрия, доводят объем раствора до метки 80% этанолом и перемешивают (раствор Б). Спустя 30 мин измеряют оптическую плотность раствора Б на спектрофотометре при длине волны 382 нм в кювете с толщиной поглощающего слоя 10 мм. В качестве раствора сравнения используют 1 мл раствора А, доведенного 80%-ным этанолом до метки в мерной колбе вместимостью 50 мл. Содержание суммы флавоноидов в сухом спиртовом и водном экстракте очанки коротковолосистой в пересчете на цинарозид вычисляют по формуле:

где D - оптическая плотность исследуемого раствора; а - навеска сырья, г; V - объем раствора А, взятого для разбавления, мл; 25 - объем раствора А, мл; 50 - объем раствора Б, мл; W - потеря в массе при высушивании сухого экстракта, %; 357 - удельный показатель поглощения комплекса цинарозида с реактивами при длине волны 382 нм.

Пример 5. Определение суммы флавоноидов в субстанции, содержащей комплекс флавоноидов очанки коротковолосистой (фракция флавоноидов). Около 0,1 г (точная навеска) субстанции, содержащей сумму флавоноидов, помещают в плоскодонную мерную колбу вместимостью 25 мл, растворяют и доводят объем раствора 80%-ным этанолом до метки. Полученное разведение фильтруют в плоскодонную колбу через бумажный фильтр (раствор А), первые 10 мл фильтрата отбрасывают. 1 мл раствора А помещают в мерную колбу вместимостью 50 мл, добавляют 1 мл 2%-ного спиртового раствора хлористого алюминия и 1 мл 8%-ного спиртового раствора ацетата натрия, доводят объем раствора до метки 80% этанолом и перемешивают (раствор Б). Спустя 30 мин измеряют оптическую плотность раствора Б на спектрофотометре при длине волны 382 нм в кювете с толщиной поглощающего слоя 10 мм. В качестве раствора сравнения используют 1 мл раствора А, доведенного 80%-ным этанолом до метки в мерной колбе вместимостью 50 мл. Содержание суммы флавоноидов в субстанции в пересчете на цинарозид вычисляют по формуле:

где D - оптическая плотность исследуемого раствора; а - навеска субстанции, г; V - объем раствора А, взятого для разбавления, мл; 25 - объем раствора А, мл; 50 - объем раствора Б, мл; W - потеря в массе при высушивании субстанции, %; 357 - удельный показатель поглощения комплекса цинарозида с реактивами при длине волны 382 нм.

Пример 6. Определение суммы флавоноидов в жидком водном экстракте (1:2) очанки коротковолосистой. 1 мл жидкого водного экстракта помещают в плоскодонную мерную колбу вместимостью 25 мл и доводят объем раствора 80%-ным этанолом до метки. Полученное разведение фильтруют в плоскодонную колбу через бумажный фильтр (раствор А), первые 10 мл фильтрата отбрасывают, 1 мл раствора А помещают мерную колбу вместимостью 50 мл, добавляют 1 мл 2%-ного спиртового раствора алюминия хлорида и 1 мл 8%-ного спиртового раствора натрия ацетата, доводят объем раствора до метки 80% этанолом и перемешивают (раствор Б). Спустя 30 мин измеряют оптическую плотность раствора Б на спектрофотометре при длине волны 382 нм в кювете с толщиной поглощающего слоя 10 мм. В качестве раствора сравнения используют 1 мл раствора А, доведенного 80%-ным этанолом до метки в мерной колбе вместимостью 50 мл. Содержание суммы флавоноидов в жидком водном экстракте очанки коротковолосистой в пересчете на цинарозид вычисляют по формуле:

где D - оптическая плотность исследуемого раствора; а - навеска жидкого водного экстракта, мл; V - объем раствора А, взятого для разбавления, мл; 25 - объем раствора А, мл; 50 - объем раствора Б, мл; 357 - удельный показатель поглощения комплекса цинарозида с реактивами при длине волны 382 нм.

Статистическая обработка результатов количественного определения суммы флавоноидов в экстракционных препаратах приведена в табл.7. Как следует из полученных данных, ошибка единичного определения с достоверной вероятностью 95% находится в пределах от 0,49 до 2,65%.

Таким образом, способ количественного определения суммы флавоноидов является унифицированным, так как позволяет проводить определение действующих веществ в сырье различных видов очанок и экстракционных препаратов очанки коротковолосистой по единой методике, при этом отличие в анализе заключается только в величине навесок и степени их разведения до фотометрируемого раствора (табл.8).

Разработанный способ может быть использован в фармацевтической и медицинской промышленности для стандартизации сырья трех видов очанок и экстракционных препаратов очанки коротковолосистой по содержанию действующих веществ (флавоноидов), проведения технологического контроля за производством.

Литература

Растительные ресурсы СССР. Цветковые растения, их использование, семейства Caprifoliaceae - Plantaginaceae. - M.: Наука, 1990, с.139.

Сухинина Т.В. Фармакогностическое изучение растений рода очанка/Автореф. канд. дис., Пермь, 2002. 20 с.

Deutschen Arcneimittel Codex, Stuttgart, 1997, A-192.

Ярцева И.Б., Куркин В.А. Количественное определение суммы флавоноидов в траве одуванчика лекарственного//Фармация, 1996, №4, с.24-26.

Самылина И.А., Евдокимова О.В. Кашникова М.В. Использование хлорида алюминия для определения суммы флавоноидов в цветках боярышника//Фармация, 1994, №6, С.42-45.

Смирнова Л.П., Первых Л.Н. Количественное определение суммы флавоноидов в цветках бессмертника песчаного//Химико-фармацевтический журнал, 1998, №6, С.35-36.

Чемесова И.И., Чубарова С.Л., Саканян Е.И. и др. Спектрофотометрический метод количественной оценки содержания полифенолов в сухом экстракте из надземной части Mellilotus officinalis (L.) Pall. и в его лекарственной форме (таблетках)//Растительные ресурсы, 2000, Вып.1, Т.36, С.72-74.

Кабишев К.Э., Саканян Е.И. Количественное определение суммы флавоноидных соединений в интраназальных лекарственных формах препарата ″Оксофил″ с полиэкстрактом из надземной части Oxytropis oxyphilla (Pall.) DC.//Растительные ресурсы, 2002, Вып.4, Т.38, С.120-127.

Бандюкова В.А. Фенолокислоты растений, их эфиры и гликозиды//Химия природ. соединений, 1983, №2, С.271-273.

Ловцева Е.А. Совершенствование способов контроля качества лекарственных средств производных пурина N-гликозидной структуры/ Автореф. канд. дис., Пятигорск, 1993. 20 с.

Государственная фармакопея СССР, XI изд., М., 1987, T.I, 336 с.

Таблица 1
Спектральные характеристики (λmax) извлечений из травы различных видов очанок в УФ-области
Условия изобретенияВиды очанок
О. коротковолосистаяО. мелкоцветнаяО. Рейтера
1. Спиртовое извлечение328 нм328 нм328 нм
2. Дифференциальный спектр спиртового извлечения с AlCl3376 нм376 нм376 нм
3. Дифференциальный спектр спиртового извлечения с AlCl3 и СН3COONa382 нм382 нм382 нм

Таблица 2
Спектральные характеристики дифференциальных УФ-спектров экстракционных препаратов очанки коротковолосистой с хлористым алюминием и ацетатом натрия
Экстракционные препаратыλmax, НМ
1. Настой (1:10)382
2. Сухой водный экстракт382
3. Жидкий водный экстракт (1:2)382
4. Настойка (1:5)382
5. Сухой спиртовый экстракт382
6. Жидкий спиртовый экстракт (1:2)382
7. Субстанция, содержащая комплекс флавоноидов (фракция флавоноидов)382

Таблица 3
Влияние условий экстракции на содержание суммы флавоноидов в траве очанки коротковолосистой
Условия экстракцииСодержание суммы флавоноидов, %
Экстрагент:
Вода2,6
Этанол, %:
403,2
603,3
803,5
903,4
Соотношение сырья и экстрагента (80%-ный этанол):
1:102,6
1:203,5
1:403,8
1:604,5
1:805.2
1:1005,1
Время экстракции, мин

(80%-ный этанол; соотношение сырья и экстрагента 1:80):
104,7
205,2
405,1
604,9

Таблица 4
Расчет величины удельного коэффициента поглощения ГСО цинарозида при λ=382 нм
Концентрация раствора, %Оптическая плотностьУдельный коэффициент поглощения, Е1%1смСреднее значение удельного коэф. поглощ., Е1%1см
0,0001320,049371,21









357±3,4
0,0002640,093352,27
0,0003930,140356,23
0,0005280,180340,91
0,0006590,232351,52
0,0007920,300378,78
0,0009240,349378,79
0,0010560,367348,48
0,0011880,421354,98
0,001320,451341,75

Таблица 5
Метрологическая характеристика способа количественного определения суммы флавоноидов в траве трех видов Очанок
Исследуемые видыСтатистические параметры
fXSxP, %tΔxE, %
О. коротковолосистая94,980,1195952,260,27±5,5
О. мелкоцветная94,690,0929952,260,21±4,5
О. Рейтера93,120,0708952,260,16±5,1

Таблица 6
Результаты количественного определения суммы флавоноидов в траве очанки коротковолосистой с использованием метода добавки ГСО цинарозида
Содержание суммы флавоноидов 1,0 г сырья, мгДобавлено ГСО цинарозида, мгСумма флавоноидовОтносительная ошибка, %
Найдено, мгВычислено, мг
49,83,7 (в сырье)52,353,5-2,2
49,83,7 (в сырье)52,953,5-1,1
50,23,7 (в сырье)52,253,9+3,2
51,53,7 (в извлечение)56,155,2-1,6
61,33,7 (в извлечение)66,765,0-2,6
61,33,7 (в извлечение)62,60,9+3,7

Таблица 7
Метрологическая характеристика способа количественного определения суммы флавоноидов в экстракционных препаратах очанки коротковолосистой
Экстракционные препаратыСтатистические параметры
fxSxP, %tΔхЕ, %
1. Настой (1:10)40,150,001549952,570,00398±2,65
2. Жидкий водный экстракт (1:2)40,510,003162952,570,008126±1,59
3. Настойка (1:5)40,650,003878952,570,00997±1,53
4. Жидкий спиртовый экстракт (1:2)42,850,005711952,570,01468±0,52
5. Сухой водный экстракт412,800,04472952,570,11494±0,90
6. Сухой спиртовый экстракт419,820,03748952,570,09634±0,49
7. Субстанция, содержащая комплекс флавоноидов (сумма флавоноидов)426,000,1789952,570,4598±1,77

1. Унифицированный способ количественного определения флавоноидов в траве и экстракционных препаратах очанки, характеризующийся тем, что в аналитической реакции используют совместно комплексообразующий агент - 2%-ный спиртовый раствор алюминия хлорида и ионизирующий агент - 8%-ный спиртовый раствор натрия ацетата; оптическую плотность окрашенного комплекса определяют методом дифференциальной спектрофотометрии при λ=(382±2) нм; для расчета суммы флавоноидов используют удельный показатель поглощения Е1%1см = 357 государственного стандартного образца цинарозида.

2. Унифицированный способ количественного определения по п.1, отличающийся тем, что для определения суммы флавоноидов в траве очанки коротковолосистой, очанки мелкоцветной и очанки Рейтера берут 0,6 г измельченного сырья и экстрагируют 80%-ным этиловым спиртом, в соотношении сырье : экстрагент 1:80 в течение 20 мин; разводят исходное извлечение до соотношения навеска : спектрофотометрируемый раствор 0,6:2500.

3. Унифицированный способ количественного определения по п.1, отличающийся тем, что для определения суммы флавоноидов в настоях очанки коротковолосистой берут навеску 1 мл и разводят ее до соотношения навеска : спектрофотометрируемый раствор 1:50.

4. Унифицированный способ количественного определения по п.1, отличающийся тем, что для определения суммы флавоноидов в жидком спиртовом экстракте очанки коротковолосистой берут навеску 1 мл и разводят ее до соотношения навеска : спектрофотометрируемый раствор 1:2500.

5. Унифицированный способ количественного определения по п.1, отличающийся тем, что для определения суммы флавоноидов в сухом спиртовом и сухом водном экстрактах в субстанции, содержащей комплекс флавоноидов, берут навеску 0,1 г и разводят ее до соотношения навеска : спектрофотометрируемый раствор 0,1:1250.

6. Унифицированный способ количественного определения по п.1, отличающийся тем, что для определения суммы флавоноидов в жидком водном экстракте берут навеску 1 мл и разводят ее до соотношения навеска : спектрофотометрируемый раствор 1:1250.



 

Похожие патенты:

Изобретение относится к медицине, а именно к неврологии. .
Изобретение относится к биохимии, а именно к лабораторным методам исследований. .

Изобретение относится к химико-токсикологическому контролю при санитарно-гигиенической оценке продуктов животноводства, а также для прижизненной и посмертной диагностики случайных отравлений животных соединениями алюминия, а именно к способу определения алюминия в биологических объектах, заключающемуся в минерализации анализируемого образца азотной, серной и хлорной кислотами, выдерживании смеси при комнатной температуре, кипячении до полного ее обесцвечивания, охлаждении, нейтрализации, добавлении реакционной ацетатной буферной смеси, с последующим измерением оптической плотности и определением концентрации алюминия по калибровочному графику, отличающийся тем, что для минерализации образца азотную, серную и хлорную кислоту добавляют к образцу одновременно, смесь выдерживают при комнатной температуре 15-20 мин, затем нагревают в закрытой колбе при постепенном повышении температуры, смесь кипятят до полного обесцвечивания, используют ацетатную буферную смесь, содержащую 10% раствор гидроксиламина солянокислого, 0,3% эриохромцианина R, 10% растворы NaOH и СН3СООН при рН 5,4, а измерение оптической плотности проводят при длине волны =535 нм.
Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано в медицинской практике для прогноза течения хламидийного конъюнктивита. .

Изобретение относится к медицине, а именно к кардиологии и наркологии, и может быть использовано в диагностике алкогольного поражения сердца у больных с тяжелым отравлением этанолом.
Изобретение относится к области клинической медицины и лабораторной диагностики. .
Изобретение относится к области медицины. .

Изобретение относится к медицине, к лазеротерапии, и может быть использовано для подбора индивидуального курса лазеротерапии для детей. .

Изобретение относится к экспериментальному разделу медицины, к способу прижизненного определения острой фазы стафилококкового среднего отита в эксперименте при проведении исследований

Изобретение относится к области биохимии и биотехнологии и может использоваться для ускоренного определения содержания белка в биологических жидкостях и ферментных растворах
Изобретение относится к медицине, а точнее к онкологии
Изобретение относится к медицине, а именно к лабораторной диагностике

Изобретение относится к медицине и может быть использовано в кардиологии детского возраста

Изобретение относится к медицине и биохимии
Изобретение относится к области лабораторной диагностики и может быть использовано для прогнозирования течения инфекционного процесса при острых кишечных инфекциях у детей
Изобретение относится к медицине, в частности к урологии
Наверх