Плавильно-заливочная установка для получения малогабаритных отливок

Изобретение относится к литейному производству, предназначено для получения малогабаритных тонкостенных отливок из химически активных металлов и сплавов титана и циркония и может быть использовано преимущественно в стоматологии для производства зубных протезов и других конструкций в нанотехнологии и машиностроительной отрасли для изготовления мелких изделий. Установка содержит рабочую камеру, в верхней части которой закреплен электрододержатель с электродом-катодом, тигель с тигледержателем, литейную форму, газовакуумную систему. Электрод-катод выполнен в виде водоохлаждаемого кольца, закреплен в водоохлаждаемом электрододержателе и установлен по окружности на равном расстоянии от тигля, достаточном для равномерного распределения тепловой энергии, необходимой для нагрева, расплавления и перегрева металла в тигле. Изобретение позволяет упростить технологический процесс расплавления с высокой однородностью и чистотой за счет высокого вакуума, а также обеспечивает неограниченный перегрев металла без воздействия микродуг на металл. 1 ил.

 

Изобретение относится к литейному производству и предназначено для получения малогабаритных тонкостенных отливок из химически активных металлов и сплавов титана, циркония, и может быть использовано преимущественно в стоматологии для производства зубных протезов и других конструкций, в нанотехнологии, машиностроительной отрасли для изготовления мелких изделий.

Известна установка для литья протезов, состоящая из корпуса, внутри которого смонтированы плавильно-заливочная камера, где размещены плавильный узел с плавильным тиглем, центробежный стол для заливки литейных форм, металлоприемник, устройство подъема и опускания электрододержателя с неплавящимися электродами, газовакуумная система, блок управления, закрепленный снаружи корпуса. Неплавящиеся электроды закреплены в электрододержателе равномерно по окружности, на расстоянии друг от друга, достаточном для обеспечения равномерного распределения тепловой энергии в процессе плавки. На штоке электрододержателя закреплена крышка-свод, выполненная из материала со свойством светового и теплового отражения, а именно из молибдена. В плавильно-заливочной камере размещен тигледержатель плавильного тигля, связанный с поворотным механизмом. Плавильно-заливочная камера связана через вакуумные разъемы с источником питания, с датчиками контроля вакуума в плавильно-заливочной камере. Количество неплавящихся электродов, используемых в установке, определяют опытным путем в зависимости от среднего внутреннего диаметра тигля, расплавляемого металла (сплава) и расстояния между электродами, достаточного для обеспечения равномерного распределения теплового эффекта при расплавлении заготовки (Патент РФ №2211419 от 27.08.2003 г.).

Данная установка имеет следующие недостатки.

В качестве электродов используются нерасходуемые (неплавящиеся) электроды в количестве 9 штук. Изготовление девяти равноценных нерасходуемых электродов, равномерно расположенных по высоте и друг от друга, является достаточно трудоемким процессом, но необходимым для стабильного функционирования дуги. Применение такого количества электродов усложняет конструкцию электродного узла и не позволяет надежно получать требуемую степень перегрева металла - процесс идет неустойчиво, что снижает эффективность и равномерность расплавления металла. Для устойчивого ведения технологического процесса с таким количеством электродов необходима достаточно большая величина тока, что естественно приводит к неэффективности получения малогабаритных отливок, чистота получаемых сплавов и металлов в защитной атмосфере аргона ниже, чем при плавке в высоком вакууме.

Задачей заявляемого технического решения в качестве изобретения является упрощение конструкции установки и технологического процесса плавления химически активных металлов и сплавов, повышение качества литья. При решении поставленной задачи достигается следующий технический результат - упрощается конструкция установки и технологический процесс плавления металла с высокой однородностью и чистотой.

Указанный технический результат достигается тем, что в известной плавильно-заливочной установке для получения малогабаритных отливок из химически активных металлов и сплавов, содержащей рабочую камеру, в верхней части которой закреплен электрододержатель с электродом-катодом, тигель с тигледержателем, литейную форму, газовакуумную систему, отличающаяся тем, что электрод-катод выполнен в виде водоохлаждаемого кольца, закреплен в водоохлаждаемом электрододержателе и установлен по окружности на равном расстоянии от тигля, достаточном для равномерного распределения тепловой энергии, необходимой для нагрева, расплавления и перегрева металла в тигле.

На фиг.1 представлен общий вид плавильно-заливочной установки для получения малогабаритных отливок, которая состоит из рабочей камеры 1, внутри которой размещены тигель 2 с тигледержателем 3, литейной формы для заливки металла 4, водоохлаждаемого электрододержателя 5, закрепленного на крышке-своде 6, источника питания 7, газовой системы для подачи рабочего газа аргона 8, для наблюдения за технологическим процессом плавки предусмотрено смотровое окно 9. Для исключения горения дуги предусмотрен экран 10, закрепленный с внешней стороны водоохлаждаемого электрода-катода 11 и препятствующий попаданию дуги на его боковую поверхность. Водоохлаждаемый электрод-катод 11 закреплен в водоохлаждаемом электрододержателе 5 равномерно по окружности на равном расстоянии от тигля 2, достаточном для обеспечения равномерного распределения тепловой энергии в процессе плавки. На крышке-своде 6 с боковой стороны через вакуумное уплотнение и диэлектрическую втулку установлен поджигающий электрод 12. Рабочая камера 1 через вакуумный затвор 13 связана с диффузионным насосом 14 и через вакуумные клапаны 15 - с форвакуумным насосом 16, с помощью которых в камере создается разрежение до 1-5·10-3 Па. Расстояние между водоохлаждаемым электродом-катодом 11 и тиглем 2 определяют опытным путем в зависимости от среднего внутреннего диаметра тигля, расплавляемого металла, достаточного для обеспечения равномерного распределения теплового эффекта при расплавлении заготовки.

Плавильно-заливочная установка работает следующим образом: в литейный тигель 2, изготовленный из графита, устанавливают металлическую заготовку диаметром 20-25 мм и высотой 10-15 мм, располагая ее по центру от водоохлаждаемого электрода-катода 11. Литейный тигель 2 располагается на металлическом тигледержателе 3, который закреплен на литейной форме 4. Включают вакуумную систему, состоящую из форвакуумного 16 и диффузионного 14 насосов. По достижении необходимого вакуума, достаточного для ведения технологического процесса плавки 5·10-1-5·10-2 Па, включают источник питания 7 и на кольцевой электрод-катод 11 подают напряжение. С помощью поджигающего электрода 12 осуществляют поджег вакуумной дуги, функционирующей в быстроперемещающихся катодных микродугах. При необходимости в рабочую камеру 1 подают рабочий газ аргон 8 до давления 5·10-1 Па, который стабилизирует работу электрической дуги. За счет быстроперемещающихся микродуг, количество которых зависит от величины силы тока: при токе 80-100 А - функционирует одна микродуга, при токе 120-160 А - две микродуги и при токе 180-240 А - три, с увеличением тока дуги процесс нагрева и плавления заготовки интенсифицируется, а равномерность нагрева обеспечивается хаотическим, быстрым перемещением микродуг по поверхности катода от 3 до 6 метров в секунду. За счет быстрого перемещения микродуг по внутренней поверхности электрода-катода 11 обеспечивается равномерное распределение тепловой энергии, необходимой для нагрева, расплавления и перегерева металла в тигле 2. После расплавления заготовки металл заливают в литейную форму 4, которая за время ведения технологического процесса расплавления металла в тигле 2 нагревается до температуры 450-500°С, Нагрев литейной формы 4 осуществляется за счет прохождения электрического тока по тиглю 2, тигледержателю 3 и литейной форме 4, а также за счет микродуг, частично попадающих на тигледержатель 3 и литейную форму 4. После остывания отливок в литейной форме 4 до заданной температуры, рабочую камеру 1 разгерметизируют и литейную форму 4 с отливками извлекают для последующих операций.

Использование предлагаемого устройства по сравнению с прототипом обеспечивает практически неограниченный перегрев металла без воздействия микродуг на металл, что исключает разбрызгивание его дугами. Упрощается технологический процесс расплавления, а высокий вакуум обеспечивает более высокое качество отливок.

Плавильно-заливочная установка для получения малогабаритных отливок из химически активных металлов и сплавов, содержащая рабочую камеру, в верхней части которой закреплен электрододержатель с электродом-катодом, тигель с тигледержателем, литейную форму, газовакуумную систему и крышку-свод, отличающаяся тем, что электрод-катод выполнен в виде водоохлаждаемого кольца, закрепленного в водоохлаждаемом электрододержателе и установленного по окружности на равном расстоянии от тигля, достаточном для равномерного распределения тепловой энергии, необходимой для нагрева, расплавления и перегрева металла в тигле.



 

Похожие патенты:

Изобретение относится к плазменной технологии в металлургическом производстве, а именно к способам и устройствам для переработки дисперсных материалов, и может быть использовано для получения чистых элементов.

Изобретение относится к электродуговым плазменным реакторам для одновременного получения расплава тугоплавких, металлических и неметаллических материалов и возгонов, преимущественно специальных видов клинкеров искусственных вяжущих, имеющих высокую степень вязкости расплава, и сопутствующих цветных металлов и может быть использовано в цементной, химической промышленности и металлургии.

Изобретение относится к вакуумной металлургии, а именно к плавильным печам для получения литых и фасонных отливок из тугоплавких и химически активных металлов и сплавов.

Изобретение относится к металлургии, в частности к экологически чистому производству магния из доломитового сырья, а также других ценных металлов или металлоидов, отличающихся токсичностью и способностью самовозгорания в окислительной среде.

Изобретение относится к электродуговым плазменным реакторам для одновременного получения расплавов тугоплавких металлических материалов и тугоплавких неметаллических материалов и возгонов и может быть использовано в строительной промышленности, конкретно производство цемента, химической промышленности и металлургии.

Изобретение относится к металлургии, в частности к конструкциям вакуумных дуговых печей для выплавки слитков тугоплавких, высокореакционных металлов и сплавов, например титановых.

Изобретение относится к области металлургии и может быть использовано при получении слитков реакционных металлов и сплавов, предназначенных для изготовления изделий авиакосмического и общего назначения.

Изобретение относится к области металлургии, а именно к плавке и литью тугоплавких металлов в вакуумных гарнисажных тигельных печах, и может быть использовано в производстве фасонных отливок, например из титановых сплавов.

Изобретение относится к нанесению покрытий в вакууме и может быть использовано для получения толстых пленок металлов при изготовлении, например, разводки коммутационных плат.

Изобретение относится к литейному производству и может быть использовано в технике, изобразительном искусстве и архитектуре. .

Изобретение относится к технологии изготовления пустотелых изделий и может быть использовано в ювелирном производстве. .
Изобретение относится к методам художественного литья, а именно к способам изготовления изделий с поверхностью, украшенной сферическими элементами. .

Изобретение относится к машиностроению, в частности к литью пустотелых изделий. .

Изобретение относится к литейному производству, в частности к изготовлению отливок гребных винтов из сплавов на медной основе, применяемых в судостроении. .

Изобретение относится к литейному производству и может быть использовано в технике, изобразительном искусстве и архитектуре. .

Отливка // 1082556

Изобретение относится к области нанесения износостойких покрытий на режущий инструмент или детали машин. Катод электродугового испарителя для нанесения износостойких покрытий на основе нитридов титана и алюминия, содержащий расходуемую часть из сплава титана и алюминия при их соотношении, мас.%: титан 30-70, алюминий 30-70, и катододержатель, выполненный из титана с цилиндрической полостью глубиной 5-6 мм и имеющий внутренний радиус скругления буртика не менее 3 мм. Способ изготовления указанного, в котором изготавливают присадочный материал в виде цилиндрического прутка длиной 500-600 мм и диаметром 15-20 мм, состоящего из тонкостенной оболочки, выполненной из алюминиевой или титановой фольги, и находящейся внутри нее шихты, состоящей из титана в виде кусочков ленты размером 10×20 мм и алюминия в виде гранул размером 5-10 мм, подлежащих переплавке. Переплавку осуществляют с использованием неплавящегося вольфрамового электрода при токе 350-400 А и подаче аргона 18-20 л/мин с получением слитка массой 40-70 г, а затем осуществляют повторную переплавку полученного слитка в индукционной тигельной печи и заливку полученного сплава расходуемой части катода в катододержатель. Упрощается изготовление катодов электродугового испарителя, содержащих расходуемую часть из сплавов титана и алюминия. 2 н.п. ф-лы, 1 ил.
Наверх