Способ изготовления гидроксиапатитовой керамики с бимодальным распределением пор


C04B35 - Формованные керамические изделия, характеризуемые их составом (пористые изделия C04B 38/00; изделия, характеризуемые особой формой, см. в соответствующих классах, например облицовка для разливочных и плавильных ковшей, чаш и т.п. B22D 41/02); керамические составы (содержащие свободный металл, связанный с карбидами, алмазом, оксидами, боридами, нитридами, силицидами, например керметы или другие соединения металлов, например оксинитриды или сульфиды, кроме макроскопических армирующих агентов C22C); обработка порошков неорганических соединений перед производством керамических изделий (химические способы производства порошков неорганических соединений C01)

Владельцы патента RU 2303580:

Институт физико-химических проблем керамических материалов РАН (RU)

Изобретение относится к области медицины, а именно к травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, системе доставки лекарственных препаратов, может использоваться для заполнения костных дефектов или как матрикс для клеточных культур. Пористая гидроксиапатитовая керамика с бимодальным распределением пор содержит тонкие внутригранульные диаметром менее 10 мкм и крупные взаимопроникающие межгранульные поры размером более 100 мкм, в суммарном количестве от 41 до 70 об.%. Способ заключается в изготовлении сферических гранул диаметром 400-600 мкм, содержащих порошок гидроксиапатита и желатин, прессовании сферических гранул под давлением 10-100 МПа и термической обработке при температурах 900-1250°С с выдержкой от 30 до 300 мин. Технический результат изобретения - создание керамики с бимодальным распределением пор. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к области керамических материалов для медицины, а именно к травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, и может использоваться для изготовления материалов, предназначенных для заполнения костных дефектов.

Керамика медицинского назначения должна иметь взаимопроникающие поры диаметром не менее 100-135 мкм, чтобы обеспечивать доступ крови к контактным поверхностям, а также прорастание и фиксацию костной ткани [1]. Поры размера менее 50 мкм также необходимы, поскольку они способствуют повышению адсорбции протеинов и адгезии остеогенных клеток.

Известно большое число исследований по технологии пористой керамики на основе гидроксиапатита. Пористую керамику получают, в основном, методом выгорающих добавок; пропиткой и последующим обжигом органических (полиуретановых) губок, либо вспениванием, например при введении пероксида водорода [2-7]. При этом пористость, например, при использовании додецилбензолсульфоната натрия достигает до 50-60%, а в случае глицина или агар-агара - порядка 80% [8]. Также используют коралл (основное вещество СаСО3), который в ходе гидротермальной обработки переходит в гидроксиапатит (250°С, 24-48 ч), сохраняя исходную микроструктуру и открытую пористость [9]. Известно использование желатина при получении микрогранул гидроксиапатит - желатин [10]. При нагревании свыше 160°С желатин удаляют, образуя поры.

Наиболее близким к предполагаемому техническому решению является способ изготовления пористой гидроксиапатитовой керамики, включающий смешение порошка гидроксиапатита, имеющего размер частиц 63 мкм, 25-37 мас.% порообразующей добавки - муки с размером частиц 0,04-0,2 мкм, одноосное и холодное изостатическое прессование смеси и последующее спекание при температурах 1200 и 1250°С [2]. Способ позволяет получать керамику с открытой пористостью 22,8-44,0% и со средним размером пор от 0,51 до 1,94 мкм. Недостаток способа заключается в том, что он не позволяет получать керамику с бимодальной пористостью: крупными порами размером более 100 мкм и тонкими порами размером менее 10 мкм.

Технический результат предлагаемого изобретения - пористая гидроксиапатитовая керамика, содержащая тонкие размером менее 10 мкм и крупные взаимопроникающие размером более 100 мкм поры в количестве от 41 до 70 об.%.

Для достижения технического результата изготавливают сферические гранулы диаметром 400-600 мкм, содержащие порошок гидроксиапатита и желатин при соотношении этих компонентов от 1:0,1 до 1:0,3, формируют из них сырые заготовки прессованием до открытой межгранульной пористости 30-54 об.% и подвергают заготовки термической обработке при температуре от 900 до 1250°С для выжигания желатина и спекания частиц порошка гидроксиапатита внутри гранул и припекания гранул между собой. В результате получают керамику с внутригранульными порами, размером менее 10 мкм, образующимися за счет выжигания желатина, и межгранульными порами размером более 100 мкм, создаваемыми укладкой гранул.

Гранулы гидроксиалатит-желатин изготавливают суспензионным методом с использованием эффекта несмешивающихся жидкостей. Суспензию гидроксиапатита в 10%-ном водном растворе желатина, при соотношении компонентов от 1:0,1 до 1:0,3, диспергируют лопастной мешалкой при скорости ее оборотов 500 мин-1 в диспергирующей жидкой среде, несмешивающейся с водным раствором биополимера. Под действием сил поверхностного натяжения образуются гранулы сферической формы. Гранулы осаждают, промывают и подвергают сушке. Рассевом на наборе сит выделяют фракцию 500-1000 мкм. Высушенные гранулы засыпают в металлические пресс-формы и подвергают одноосному прессованию под давлением от 10 до 100 МПа с получением сырых образцов. Образцы затем сушат на воздухе 24 ч и подвергают термической обработке при температуре 900-1250°С с выдержкой при этой температуре от 30 до 300 мин в атмосфере воздуха.

Ниже в таблице приведены свойства материалов, полученных при различных режимах процесса.

При соотношении компонентов менее 1:0,1 и более 1:0,3 не представляется возможным получения гранул гидроксиапатит - желатин.

При давлении прессования менее 10 МПа не достигается компактирование, а при давлении выше 100 МПа поры имеют средний размер менее 50 мкм, что обусловлено как деформацией сырых гранул, так и уплотнением их упаковки.

При температуре термообработки ниже 900°С не происходит спекание порошка и гранул гидроксиапатита, а при температуре выше 1250°С резко снижается пористость.

Источники информации

1. Hing K.A., Best S.M., Tanner K.A., Bonfield W., Revell P.A. Quantification of bone ingrowth within bone derived porous hydroxyapatite implants of varying density // J. Mater. Sci. Mater. Med. 1999. V.10, №10/11. Р.663-670.

2. Slosarzyk A., Stobierska E., Paszkiewicz Z. Porous hydroxyapatite ceramics // J. Mater. Sci. Lett. 1999. №18. P.1163.

3. Yamasaki N., Kai Т., Nishioka M., Yanagisawa K. et al. Porous hydroxyapatite ceramics prepared by hydrothermal hot-pressing // J. Mater. Sci. Lett. 1990. V.9, №10. P.1150.

4. Tanner K.E., Downes R.N., Bonfield W. Clinical application of hydroxyapatite reinforced polyethylene // British Ceram. Trans. 1994. №3. P.104-107.

5. Liu D. Preparation and characterization of porous HA bioceramic via a slip-casting route // J. Ceram. Intern. 1997. V.24. P.441-446.

6. Engin N.O., Tas A.C. Preparation of porous Са10(РО4)6(ОН)2 and β-Са3(РО4)2 bioceramics // J. Am. Ceram. Soc. 2000. №7. P.1581-1584.

7. Sepulveda P., Ortega F.S., Innocentini M.D.M., Pandolfelli V.C. Properties of highly porous hydroxyapatite obtained by the gel casting of foams // J. Am. Ceram. Soc. 2000. V.83, №12. Р.3021-3024.

8. Орловский В.П., Суханова Г.Е., Ежова Ж.А., Родичева Г.В. Гидроксиапатитная биокерамика// Ж. Всес. хим. об-ва им. Д.И.Менделеева. 1991. Т.36, №10. С.683-690.

9. Suchanek W., Yoshimura M. Processing and properties of HA-based biomaterials for use as hard tissue replacement implants // J. Mater. Res. Soc. 1998. V.13, №1. P.94-103.

10. RU 2235061 С1, 27.08.2004.

Таблица.

Содержание открытой пористости и распределение пор по размерам спеченных образцов при различных режимах процесса.
Соотношение компонентов, гидроксиапатит-

желатин
Давление прессования,

МПа
Температура термообработки,

°С
Выдержка, минОткрытая пористость,

%
Преобладающий размер пор
ИнтрапорыИнтерпоры
Размер, мкмКоличество, %Размер, мкмКоличество,

%
1:0,15------
1:0,110900300701-1033100-15037
1:0,1101100120661-1031100-15035
1:0,1301100120571-103310024
1:0,130125060491-53010019
1:0,150900300531-103450-10019
1:0,150125060451-52950-10016
1:0,11001100120431-10315012
1:0,1100125060411-5295012
1:0,11501000180431-103409
1:0,150850300-----
1:0,15013001201911550-704
1:0,250125060591-54350-10016
1:0,350125060701-55450-10016
1:0,05--------
1:0,4--------

1. Способ изготовления пористой гидроксиапатитовой керамики с бимодальным распределением пор, содержащей тонкие внутригранульные диаметром менее 10 мкм и крупные взаимопроникающие межгранульные поры размером более 100 мкм, в суммарном количестве от 41 до 70 об.%, заключающийся в изготовлении сферических гранул диаметром 400-600 мкм, содержащих порошок гидроксиапатита и желатин, прессовании сферических гранул под давлением от 10 до 100 МПа и термической обработке при температурах от 900 до 1250°С с выдержкой от 30 до 300 мин.

2. Способ изготовления пористой гидроксиапатитовой керамики по п.1, отличающийся тем, что сферические гранулы содержат гидроксиапатит и желатин при массовом соотношении компонентов 1:0,1.



 

Похожие патенты:
Изобретение относится к области керамических материалов для медицины, а именно травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, и может использоваться для изготовления материалов, предназначенных для заполнения костных дефектов.
Изобретение относится к области медицины, а именно к травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, и может использоваться для заполнения костных дефектов.

Изобретение относится к области синтеза новых химически чистых цезийсодержащих соединений, которые могут быть использованы в качестве веществ-матриц для изготовления активной части радионуклеидных источников, в частности источников ионизирующего излучения на основе цезия-137.
Изобретение относится к производству строительных материалов и изделий, в частности стеновым керамическим изделиям, и может быть использовано при производстве керамического кирпича и камней.
Изобретение относится к огнеупорной промышленности, в частности к производству огнеупоров для футеровки печей плавки алюминия. .
Изобретение относится к способам для горячего ремонта кладки промышленных печей методом керамической наплавки и может быть использовано в металлургической, коксохимической и других отраслях промышленности.
Изобретение относится к огнеупорным материалам, применяемым в металлургии, в частности, в качестве огнеупорной смеси для засыпки выпускного канала сталеразливочного ковша.
Изобретение относится к технологии производства сложнопрофильных изделий из кварцевой керамики с применением методов шликерного и центробежного литья. .
Изобретение относится к области производства огнеупорных и керамических материалов, используемых для непрерывной разливки сталей, а также в печных огнеупорах. .
Изобретение относится к области производства огнеупорных и керамических материалов, используемых для непрерывной разливки сталей, а также в печных огнеупорах. .
Изобретение относится к технике производства огнеупорных материалов, которые могут быть использованы как защитные покрытия от коррозионных сред при технологических нагревах и в процессе изготовления деталей и полуфабрикатов.
Изобретение относится к медицине, а именно к стоматологии, и может быть использовано при реконструктивных костно-пластических операциях для замещения дефектов костной ткани различной этиологии, особенно в комплексном лечении больных с пародонтитом.
Изобретение относится к области керамических материалов для медицины, а именно травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, и может использоваться для изготовления материалов, предназначенных для заполнения костных дефектов.
Изобретение относится к медицине, а именно к стоматологии, и может быть использовано при реконструктивных костно-пластических операциях для замещения дефектов костной ткани различной этиологии.
Изобретение относится к области медицины, а именно к травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, и может использоваться для заполнения костных дефектов.
Изобретение относится к медицине, а именно к оториноларингологии, и может быть использовано при пластики дефекта верхнечелюстной пазухи после гайморотомии. .
Изобретение относится к области медицины и касается способа формирования костного имплантата, который может быть использован при пластике костной ткани как при лечении, так и при протезировании участков кости, пораженной дистрофией, при дефектах костной ткани в результате врожденных или приобретенных заболеваний.

Изобретение относится к медицине, а именно к ортопедии и травматологии, и может быть применимо для костной пластики. .
Изобретение относится к медицине, а именно к травматологии в лечении переломов шейки бедра. .
Наверх