Способ получения ингибиторов коррозии для нефтепромысловых, минерализованных и сероводородсодержащих сред

Изобретение относится к способу получения ингибиторов коррозии и может быть использовано для защиты газо- и нефтепромыслового оборудования, работающего в сероводородсодержащих высокоминерализованных водных средах, от коррозии. Способ получения ингибиторов коррозии для нефтепромысловых, минерализованных и сероводородсодержащих сред заключается в том, что активную основу получают взаимодействием полиэтиленполиаминов с олеиновой кислотой или продуктом окисления 2-этилгексенового альдегида с кислотным числом 155-165 мгКОН при температуре 120-180°С в течение 4-6 часов, затем при 180-230°С в течение 3 часов и выдерживают при 230-250°С в течение 1-2 часа с одновременным отгоном воды и легкокипящих компонентов. Затем реакционную смесь охлаждают и смешивают с доступными растворителями и диспергаторами при 20-60°С в течение 1-2 часа. Использование способа позволит значительно уменьшить себестоимость выпускаемой продукции за счет использования дешевых и доступных растворителей и минимального количества качественной активной основы, а также обеспечить высокие защитные свойства полученных ингибиторов коррозии. 1 табл.

 

Изобретение относится к области защиты газо- и нефтепромыслового оборудования и трубопроводов, работающих в сероводородсодержащих высокоминерализованных водных средах, от коррозии и наводораживания, а также транспортировки нефти и газа.

Известен способ получения ингибиторов коррозии взаимодействием α-разветвленных монокарбоновых кислот фракции С1020 c полиэтиленполиаминами и 1,4-ди (2-аминоэтил)пиперазином. Процесс ведут при температуре 250-280°С в течение 2-6 часов при мольном соотношении кислота : полиэтиленполиамины: 1,2-ди(2аминоэтил)пиперазин, равном 1:0,7-0,9:0,2-0,5, затем при вакуумировании 1-30 мм вод.ст. в течение 2-4 часов отгоняют реакционную воду и избыток полиэтиленполиаминов, реактор охлаждают до 160-180°С и при перемешивании загружают α,α-разветвленные монокарбоновые кислоты или жирные кислоты талового масла в мольном соотношении продукт конденсации : кислота, равном 1:1, перемешивают в течение 2-4 часов, охлаждают до 40-60°С и вводят при перемешивании 2-8% (мас.) поверхностно-активного вещества неионогенного типа, 1-25% (мас.) насыщенного одноатомного спирта C1-C4, 32-73% (мас.) композиционного ароматического растворителя. [Патент РФ 2239671, опубл. 10.11.2004 г., Бюл. №31].

Известен способ получения ингибитора коррозии на основе продукта конденсации полипропиленполиаминов с вышими изомерными монокарбоновыми кислотами или синтетическими жирными кислотами с последующим цианэтилированием, оксиалкилированием, алкилированием и изготовлением препаративной формы ингибитора добавлением растворителя к определенной части активной основы. В качестве аминов используют полипропиленполиамины или их техническую смесь, а в качестве монокарбоновых кислот используют высшие изомерные α-разветвленные монокарбоновые кислоты с атомами углерода С628 или синтетическими жирными кислотами с атомами углерода С1028 [Патент РФ 2267562, опубл. 10.01.2006, Бюл. №1].

Недостатком известных способов получения ингибиторов коррозии являются применение в α-разветвленных монокарбоновых кислот - отсутствие их производства.

Наиболее близким по технической сущности и достигаемым результатам является способ получения ингибитора коррозии взаимодействием полиэтиленполиаминов, полиэтилен- пропиленполиаминов и полипропиленполиаминов с дихлорэтаном или 1,2-дихлорпропаном с изомерными α-разветвленными монокарбоновыми кислотами с атомами углерода С528 при 250-280°С с последующей реакцией получения имдазолинов с галоидалкилами акрилонитрилом и окисями алкиленов при 40-80°С [Патент РФ 2135483, опубл. 27.08.1999 г.

Недостатком известного способа получения ингибитора коррозии является многостадийность технологии, отсутствие α-разветвленных монокарбоновых кислот, относительно низкий защитный эффект.

Задача изобретения - разработка способа получения ингибиторов коррозии, расширение сырьевой базы и ассортимента ингибиторов коррозии, применение доступного и дешевого сырья и материалов, упрощение технологии его получения, улучшение показателей эффективности.

Технический результат при использовании изобретения выражается в получении активной основы ингибитора коррозии из полиэтиленполиамина и олеиновой кислоты или продукта окисленния 2-этилгексенового альдегида в более мягких условиях, в использовании относительно меньшего количества активной основы и дешевого растворителя.

Вышеназванный результат получения ингибиторов коррозии достигается тем, что ПЭПА взаимодействует с олеиновой кислотой или продуктом окисления 2-этилгексенового альдегида с кислотным числом 155-165 мгКОН при мольном соотношении исходных реагентов, равном 1-1,1:1,0, при температуре 120-180°С в течение 4 часов, затем при температуре 180-230°С в течение 3 часов и при 230-250°С в течение 2 часов с одновременным отгоном воды и легкокипящих компонентов.

После чего реакционную смесь охлаждают, смешивают с растворителем - кубовыми остатками бутиловых спиртов (КОБС) и толуолом, неонолом (ПАВ) при температуре 25-60°С в течение 1,5-2,0 часов.

Активную основу (АО), КОБС, толуол, неонол берут в следующих соотношениях, мас.%:

АО15
КОБС65-70
Толуол11-16
Неонол3-4

Полиэтиленполиамины (ПЭПА) представляют собой смесь индивидуальных аминов - диэтилентриамина (ДЭТА), триэтилентетрамина (ТЭТА), тетраэтиленпентамина (ТЭПА), пентаэтиленгексамина (ПЭГА) и т.д. общей формулы H2N(CH2)2NH(CH2CH2NH)nH, где n=0,1,2,3,4... и более.

ПЭПА в основном состоят из ДЭТА (n равное 1), ТЭТА (n равное 2), ТЭПА (n равное 3), ПЭГА (n равное 4) и т.д. ПЭПА выпускаются на Стерлитамакском ОАО «Каустик» ТУ2413-214-00203312-2002. Авторами заявляемого способа выделены путем ректификации фракции, содержащие преимущественно ДЭТА (легкие ПЭПА), содержащие преимущественно ТЭТА (средние ПЭПА), содержащие преимущественно ТЭПА, ПЭГА и т.д. (тяжелые ПЭПА). Средний молекулярный вес легкой фракции составляет 130 г/моль, средней фракции - 170 г/моль, тяжелой фракции - 200 г/моль.

Способ поясняется следующими примерами.

Пример 1. а) В реактор, снабженный механической мешалкой, термометром, обратным холодильником, загружают 85 г (0,5 моль) средних фракций полиэтиленполиаминов (ПЭПА) (М. вес 170 г/моль) и 141 г (0,5 моль) олеиновой кислоты, температуру реакционной смеси поднимают до 140-150°С с одновременным отгоном воды и легкокипящих примесей под током азота, перемешивают при этой температуре 4 часа и еще 3 часа при 180-230°С. Реакционную смесь выдерживают при 230-240°С в течение часа. В результате чего преимущественно образуются производные 2-алкилимидазолина (имидазолин) с кислотным числом 8-12 мг КОН/г (активная основа ингибитора коррозии).

б) приготовление рецептуры ингибитора коррозии.

Берут 15 г активной основы, 65 г КОБСа, 16 г толуола и 4 г неонола и перемешивают при 25-60°С в течение 1,5-2 часов и после чего определяют защитные свойства. Результаты испытаний приведены в таблице.

Пример 2. В условиях примера 1 в реактор загружают 65 г (0,5 моль) легких фракций ПЭПА (М. вес 130 г/моль) и 141 г (0,5 моль) олеиновой кислоты, нагревают до температуры 140°С и перемешивают при температуре 140-150°С в течение 4 часов, затем еще 3 часа при 180-230°С с одновременным отгоном воды и примесей (легкие примеси аминов) под током азота, после чего содержимое реактора выдерживают при 240°С в течение 1 часа. В результате чего преимущественно образуются производные 2-алкилимидазолина (имидазолин) с кислотным числом 8-12 мг КОН/г (активная основа ингибитора коррозии).

б) в условиях п.1 пп. б) смесь 15 г активной основы, 70 г КОБСа, 11 г толуола и 4 г неонола перемешивают при 20-40°с в течение 1,5 часов. Защитные свойства приведены в таблице.

Пример 3. В условиях примера 1 в реактор загружают 88 г (0,55 моль) ПЭПА (М. вес 160 г/моль) и 169,4 г (0,5 моль) продукта окисленния 2-этилгексенового альдегида с кислотным числом 165 мгКОН/г (средний молек. вес 338,4), перемешивают при температуре 120-130°С под током азота в течение 3 часов с одновременным отгоном воды и легкокипящих компонентов, затем при температуре 140-230°С в течение 3 часов и выдерживают при 230-245°С 1,5 часа. Выделяют расчетное количество воды, соответствующей образованию имидазолинов и амидоаминов.

б) приготовление товарной формы (рецептуры) ингибитора коррозии. Смесь 15 г активной основы, 66 г КОБСа, 16 г толуола и 3 г неонола перемешивают при 25-50°С в течение 2 часов и после чего определяют защитные свойства, которые приведены в таблице.

Пример 4. В условиях примера 1 в реактор загружают 100 г (0,5 моль) тяжелых фракций ПЭПА (М. вес 200 г/моль) и 169,4 г (0,5 моль) продукта окисленния 2-этилгексенового альдегида с кислотным числом 155 мгКОН/г (средний молек. вес 362), перемешивают при температуре 160-180°С 3 часа, при температуре 190-230°С в течение 3 часов и выдерживают при 245-250°С в течение 1,5 часов.

б) для приготовления товарной формы берут смесь 15 г активной основы, 65 г КОБСа, 16 г толуола и 4 г неонола, которую перемешивают при 30-60°С в течение 1,5-2 часов, затем определяют защитные свойства, которые приведены в таблице.

Пример 5. Смесь 14 г активной основы на основе ПЭПА и олеиновой кислоты, 80 г КОБСа, 4 г толуола и 2 г неонола перемешивают при 25-40°С в течение 1 часа и определяют защитные свойства. Результаты приведены в таблице.

Пример 6. Смесь 20 г активной основы на основе ПЭПА и олеиновой кислоты, 50 г КОБСа, 25 г толуола и 5 г неонола перемешивают при 25-30°С в течение 0,5 часа. Результаты экспериментов приведены в таблице.

Примеры 1-4, при условии выдерживания заявляемых параметров процесса, подтверждают высокие защитные свойства получаемых ингибиторов коррозии.

Примеры 5-6 свидетельствуют о том, что отклонение от заявляемых параметров процесса приводит к снижению защитных свойств ингибиторов коррозии. В небольшой степени защитные свойства увеличиваются при увеличении количества активной основы в пределах 20% (пример 6), п.11-12 таблицы.

Результаты испытаний ингибиторов коррозии на защитную эффективность.
№ п/пСостав ингибитора коррозии, мас.%Дозировка, мг/лЗащитное действие, %
115% активная основа (АО) по примеру 1, 65% КОБС, 16% толуол, 4% неонол3098,8
215% активная основа (АО) по примеру 1, 70% КОБС, 11% толуол, 4% неонол5099,4
315% активная основа (АО) по примеру 2, 70% КОБС, 11% толуол, 4% неонол3098,2
415% активная основа (АО) по примеру 2, 65% КОБС, 16% толуол, 4% неонол5099,2
515% активная основа (АО) по примеру 3, 66% КОБС, 16% толуол, 3% неонол3099,0
615% активная основа (АО) по примеру 3, 70% КОБС, 12% толуол, 3% неонол5099,5
715% активная основа (АО) по примеру 4, 65% КОБС, 16% толуол, 4% неонол3098,6
815% активная основа (АО) по примеру 4, 70% КОБС, 12% толуол, 3% неонол5099,3
914% активная основа (АО) по примеру 5, 80% КОБС, 4% толуол, 2% неонол3084,0
1014% активная основа (АО) по примеру 5, 80% КОБС, 4% толуол, 2% неонол5089,2
1120% активная основа (АО) по примеру 6, 50% КОБС, 25% толуол, 5% неонол3090,6
1215% активная основа (АО) по примеру 6, 55% КОБС, 25% толуол, 5% неонол5092,4

Способ получения ингибиторов коррозии для нефтепромысловых, минерализованных и сероводородсодержащих сред с использованием в качестве активной основы продукта взаимодействия индивидуальных аминов или их технической смеси с высшими изомерными монокарбоновыми кислотами с последующим смешением с растворителем и диспергатором, отличающийся тем, что активную основу получают взаимодействием полиэтиленполиаминов с олеиновой кислотой или продуктом окисления 2-этилгексенового альдегида с кислотным числом 155-165 мг КОН/г в мольном соотношении исходных реагентов, равном 1,0-1,1:1, при температуре 120-180°С в течение 3-4 ч, затем при температуре 180-230°С в течение 3 ч и при 230-250°С в течение 1-2 ч, смешением с кубовым остатком производства бутиловых спиртов, толуолом и неонолом при температуре 25-60°С в течение 1,5-2,0 ч при следующем соотношении исходных компонентов, мас.%:

Активная основа15
Кубовый остаток производства бутиловых спиртов65-70
Толуол11-16
Неонол3-4



 

Похожие патенты:

Изобретение относится к защите от коррозии деталей машин, конструкций и сооружений из кадмированных углеродистых и низколегированных сталей, которые контактируют с водными растворами солей, кислот, сточными водами, морской водой, увлажненными почвами.
Изобретение относится к области добычи нефти, газа и конденсата, а именно к реагентам для защиты внутрискважинного оборудования от коррозии. .
Изобретение относится к области химической технологии, в частности к ингибиторам коррозии для низкозамерзающих жидкостей, применяемых в качестве теплоносителей в системах теплоснабжения бытового и промышленного назначения.
Изобретение относится к области химической технологии и может быть использовано в системах охлаждения двигателей внутреннего сгорания и в качестве теплоносителя в теплообменных аппаратах.
Изобретение относится к области химической технологии и может быть использовано в системах охлаждения двигателей внутреннего сгорания и в качестве теплоносителя в теплообменных аппаратах.
Изобретение относится к средствам защиты нефтепромыслового оборудования от сероводородной коррозии и может быть использовано в нефтедобывающей промышленности. .

Изобретение относится к области защиты оборудования от коррозии, а именно к защите оборудования в условиях переработки нефти и нефтепродуктов, и может быть использовано при атмосферной ректификации в процессах первичной переработки нефти и каталитического риформинга.
Изобретение относится к средствам защиты нефтепромыслового оборудования от сероводородной коррозии и может быть использовано в нефтедобывающей промышленности. .

Изобретение относится к области защиты газо- и нефтепромыслового оборудования и трубопроводов, работающих в трехфазных высокоминерализованных средах (вода, органика, газ), от коррозии, конкретно к способу получения ингибиторов коррозии на основе продукта конденсации полипропиленполиаминов (ПППА) с высшими изомерными -разветвленными монокарбоновыми кислотами (ВИК) или синтетическими жирными кислотами (СЖК) с последующим цианэтилированием, оксиалкилированием, алкилированием и изготовлением препаративной формы ингибитора добавлением растворителя к определенной части активной основы.
Изобретение относится к области защиты от коррозии металлических поверхностей, находящихся в контакте с распыляемой водой в промышленных технологических установках
Изобретение относится к способу получения ингибиторов коррозии и может быть использовано для защиты газо- и нефтедобывающего оборудования, работающих в высокоминерализованных сероводородсодержащих средах от коррозии

Изобретение относится к области защиты металлов от коррозии и может быть использовано для ингибирования коррозии в металлических трубопроводах

Изобретение относится к химическим способам защиты углеводородов, в частности абсорбентов маслоабсорбционных установок, от окисления и деструкции, а также защиты внутренних поверхностей технологического оборудования и трубопроводов указанных установок от коррозионных разрушений и образования смолистых отложений
Изобретение относится к защитным консервационным материалам для противокоррозионной защиты металлических изделий от воздействия окружающей среды
Изобретение относится к области защиты металлов от атмосферной коррозии с помощью ингибиторов и может быть использовано для долговременной консервации металлоконструкций и изделий из черных металлов
Изобретение относится к области защиты металлов от атмосферной коррозии с помощью ингибиторов и может быть использовано для долговременной консервации металлоконструкций и изделий из черных металлов

Изобретение относится к области защиты металлов от коррозии в минерализованных водно-нефтяных средах, содержащих сероводород, ингибиторами и может быть использовано при защите от коррозии трубопроводов и оборудования в нефтяной отрасли

Изобретение относится к области защиты металлов от коррозии с помощью ингибиторов в минерализованных средах, содержащих сероводород, и может быть использовано в нефтяной отрасли
Изобретение относится к составам для ингибирования коррозии и солеотложений в теплообменном оборудовании из низкоуглеродистых сталей
Наверх