Автоматизированный лабораторный выпарной стенд



Автоматизированный лабораторный выпарной стенд
Автоматизированный лабораторный выпарной стенд
Автоматизированный лабораторный выпарной стенд
Автоматизированный лабораторный выпарной стенд
B01D1/00 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2687916:

Акционерное общество "Радиевый институт им. В.Г. Хлопина" (RU)

Изобретение относится к области конструирования выпарного оборудования, конкретно к разработке лабораторного выпарного стенда с дистанционным обслуживанием для исследований выпарных операций в токсичных, радиохимических, фармацевтических и других производствах, требующих бесконтактного проведения процесса. Автоматизированный лабораторный выпарной стенд включает в себя выпарной аппарат, снабженный выносной греющей камерой и гидростатическим капиллярным плотномером-уровнемером для автоматизированного контроля и управления уровнем кубового раствора, парогенератор и конденсатор, а также весовые дозаторы для автоматизированной непрерывной подачи всех входящих потоков из мерников и измерения и фиксации скорости подачи, автоматизированный слив избытка кубового раствора в сочетании с измерением и регулированием электрической мощности парогенератора по температуре конденсируемого пара в греющей камере. Он отличается тем, что выпарной аппарат снабжен патрубками для ввода реагента в его кубовую часть и флегмы на сменную насыпную насадку, удерживаемую перфорированной тарелкой в верхней его части, а его сепаратор снабжен обогревателем. Стенд снабжен, по меньшей мере, одним абсорбером газов, отходящих из выпарного аппарата и/или из сборника дистиллята, в каждый из которых подаются растворы реагентов из мерников. В состав стенда дополнительно введены весовой дозатор для дозированного отбора из выпарного аппарата газовыделяющего кубового раствора, весы и/или тензодатчики для измерения и регистрации количества всех исходных и конечных продуктов работающего стенда путем измерения массы раствора в емкостях, система электромагнитных клапанов для приема и передачи исходного и кубового растворов, а также абсорбатов, измеритель скорости выходящего газового потока, прецизионный стабилизатор электропитания парогенератора, устройства для определения солевого состава исходного раствора и получаемых продуктов и проточные кондуктометры на перетоках исходного раствора и получаемых продуктов. Предусмотрено подключение стенда к программно-техническому комплексу для учета и предсказания материального баланса по потокам и движению целевого компонента в реальном времени с возможностью выдачи информации на пульт оператора. Технический результат – обеспечение возможности дистанционного использования и обслуживания при размещении исполнительной части модели стенда за той или иной биологической защитой, а также обеспечение возможности подбора режимов. 10 з.п. ф-лы, 3 ил.

 

Изобретение относится к области конструирования выпарного оборудования, конкретно к разработке лабораторного выпарного стенда с дистанционным обслуживанием для исследований выпарных операций в токсичных, радиохимических, фармацевтических и других производствах, требующих бесконтактного проведения процесса.

Описан лабораторный стенд [Зильберман Б.Я., Макарычев-Михайлов М.Н., Рябков Д.В. и др. Особенности распределения кислот между жидкостью и паром в системах HNO3 - Н2О и HNO3 - НА - Н2О в выпарных аппаратах. Химическая технология 2009. №12, с. 755-763.], на котором были проведены исследования распределения кислот между жидкостью и паром в выпарном аппарате с циркуляцией кубового раствора при упаривании азотнокислых растворов в бесфлегмовом режиме. Схема стенда представлена на фиг. 1.

Основным элементом стенда является выпарной аппарат 1, который имеет производительность по дистиллату 0,2-1,5 л/ч, но является, тем не менее, подобным более крупным аппаратам в масштабе вплоть до 1:5000. Аппарат 1 со смотровым стеклом 2 состоит из сепаратора 3, циркуляционной трубы 4 и выносной греющей камеры 5 в которую подается греющий пар из парогенератора 6. На линии подачи пара установлен клапан сброса давления 7, а на линии слива конденсата вентиль регулирования слива конденсата 8. На самом парогенераторе 6 установлены аварийный клапан 9 и манометр 10. Напряжение на нагревателе парогенератора 6 регулируется ЛАТРом 11. Сепаратор 3 обогревается с помощью намотанной на него нихромовой проволоки 12, на которую ток подается через трансформатор 13. Напряжение на концах проволоки регулируется ЛАТРом 14. На линии обогрева сепаратора 3 установлен предохранитель 15. Питающий раствор дозируется в циркуляционную трубу 4 аппарата 1 из емкости 16 с помощью перистальтического насоса 17. Вторичный пар из сепаратора 3 попадает в конденсатор 18, а из него в емкость приема дистиллата 19. Кубовый раствор сливается через вентиль 20 в емкость приема кубового раствора 21.

Упаривание проводится при поддержании постоянного уровня кубового раствора, контролируемого визуально через смотровое окно 2. Уровень кубового раствора поддерживается в заданном интервале его изменения путем изменения расхода исходного раствора в ручном режиме при постоянном давлении греющего пара, поступающего из парогенератора 6, и периодическом ручном сливе кубового раствора до нижнего заданного уровня при его накоплении до верхнего заданного уровня, что вносит существенные сложности в ходе работы.

Известен также выпарной стенд следующего поколения [Гофман Ф.Э., Гофман Р.Д., Зильберман Б.Я., Рябков Д.В., Андреева Е.В. Лабораторный выпарной стенд с автоматизированной системой управления. Химическая технология, 2012, №9, с. 565-570], принятый нами за прототип (фиг. 2).

Стенд снабжен системой автоматического контроля и управления уровня кубового раствора в аппарате с помощью гидростатического капиллярного плотномера-уровнемера 22, а также системой автоматической подачи всех входящих потоков с измерением и фиксацией скорости подачи с помощью весовых дозаторов и автоматического слива избытка кубового раствора. Кроме того, стенд снабжен системой измерения мощности парогенератора 23 и ее регулирования по температуре конденсируемого пара 24 в греющей камере 5.

Отдельные узлы прототипа следует рассмотреть более подробно.

- Выпарной аппарат 1 отличается от аналога отсутствием обогрева сепаратора 3 и смотрового стекла.;

- В циркуляционную трубу 4 выпарного аппарата с помощью весового дозатора 25 непрерывно подается питающий раствор при автоматическом поддержании постоянного уровня кубового раствора, контролируемого с помощью гидростатического капиллярного плотномера-уровнемера 22. Заданный уровень кубового раствора поддерживается, как и в аналоге, путем изменения расхода исходного раствора, но в автоматическом режиме при постоянном расходе греющего пара из парогенератора 6, обеспечиваемом путем автоматического поддержания постоянного давления в нем. Для обеспечения заданной кратности упаривания и пробоотбора вывод кубового раствора осуществляется мелкими порциями путем автоматического открытия клапана 26 в пропорции к количеству питающего раствора, подающегося из мерника 16 весовым дозатором 25.

- В системе управления реализованы два алгоритма управления (пусковой и стапдонарный), общим элементом которых является поддержание заданной температуры поверхности греющей камеры 5 путем влияния на величину давления пара в парогенераторе 6 через воздействия на потребляемую мощность.

- Для измерения уровня и плотности кубового раствора используется капиллярный уровнемер-плотномер 22 [Пат. РФ 2133023 (Бюл. №22, 1999)]. Данное устройство обеспечивает измерение двух разностей давлений в трех отличающихся по высоте точках сепаратора лабораторного аппарата. Передача давления из контролируемой среды к датчикам дифференциального давления производилась по трем капиллярным импульсным линиям 27.1 - 27.3, заполненным разделительной жидкостью.

Прототип имеет недостатки, обусловленные упариванием раствора с нелетучим нетоксичным целевым компонентом при установке стенда на лабораторном столе в условиях постоянно доступного обслуживания. Существенной проблемой является также определение плотности кубового раствора во время его кипения в аппарате, особенно при попутном проведении в кубовой части аппарата химической реакции, сопряженной с газовыделением [Патент RU 2596816 (Бюл. №25, 2016)]. Кроме того, при замене вида исходного раствора при подаче дополнительных реагентов необходима длительная операция перекалибровки весовых дозаторов. Также в нем отсутствует имеющаяся в аналоге компенсация теплопотерь, вызывающих паразитную флегму, особенно нежелательную при наличии летучего целевого или фонового компонента, такого как азотная кислота.

Задачей предлагаемого изобретения является создание автоматизированного лабораторного выпарного стенда, предназначенного для размещения в боксе или камере с дистанционным обслуживанием для работы с радиоактивными или высокотоксичными веществами, который снабжен системой автоматической калибровки весовых дозаторов и обогревом сепаратора для предотвращения образования паразитной флегмы, а также более совершенной системой определения плотности раствора при кипении, что позволит осуществить контролируемое проведение химической реакций на фоне упаривания, то есть с использованием выпарного аппарата одновременно как проточного химического реактора:

Техническим результатом предлагаемого изобретения является возможность дистанционного использования и обслуживания при размещении исполнительной части модели стенда за той или иной биологической защитой, а также возможность подбора режимов, в которых при исследовании или маломасштабном производственном упаривании растворов токсичных или радиоактивных веществ или их модельных растворов при дистанционном обслуживании и автоматическом поддержании заданного режима достигается и фиксируется заданный результат или степень его достижения, в том числе степень концентрирования хвостовых растворов без осадкообразования и с заданной степенью образования или превращения целевого компонента, а также режимы обработки отходящей парогазовой фазы.

Технический результат достигается тем, что в автоматизированном лабораторном выпарном стенде, предназначенном для работы с токсическими и радиоактивными растворами, включающем выпарной аппарат, снабженный выносной греющей камерой и гидростатическим капиллярным плотномером-уровнемером для автоматизированного контроля и управления уровнем кубового раствора, парогенератор и конденсатор, а также весовые дозаторы для автоматизированной непрерывной подачи всех входящих потоков из мерников и измерения и фиксации скорости подачи, автоматизированный слив избытка кубового раствора в сочетании с измерением и регулированием электрической мощности парогенератора по температуре конденсируемого пара в греющей камере, выпарной аппарат снабжен патрубками для ввода реагента в его кубовую часть и флегмы на сменную насыпную насадку, удерживаемую перфорированной тарелкой в верхней его части, а его сепаратор снабжен нагревателем. Стенд снабжен, по меньшей мере, одним абсорбером газов, отходящих из выпарного аппарата и/или из сборника дистиллята, в каждый из которых в качестве флегмы подаются растворы реагентов из мерников. В состав стенда дополнительно введены весовой дозатор для дозированного отбора из выпарного аппарата газо-выделяющего кубового раствора, весы и/или тензодатчики для измерения и регистрации количества всех исходных и конечных продуктов работающего стенда путем измерения массы раствора в емкостях, система электромагнитных клапанов для приема и передачи исходного и кубового раствора и продукта, измеритель скорости выходящего газового потока, прецизионный стабилизатор электропитания парогенератора, причем стенд выполнен с возможностью подключения к программно-техническому комплексу для учета и предсказания материального баланса по потокам и движению целевого компонента в реальном времени с возможностью выдачи информации на пульт оператора.

В автоматизированном лабораторном выпарном стенде система стабилизации мощности поддерживает мощность парогенератора с точностью не хуже 2% в пределах производительности выпарного аппарата. В состав автоматизированного лабораторного выпарного стенда могут входить выпарные аппараты иной конструкции, в частности, с прямоточной греющей камерой с нисходящим или восходящим потоком. В автоматизированном лабораторном выпарном стенде реагент подается в кубовую часть под уровень раствора, причем размеры кубовой части выпарного аппарата обеспечивает необходимую задержку раствора, необходимую для протекания реакции. В автоматизированном лабораторном выпарном стенде емкость и клапан для приема кубового раствора контролируемо обогреваются при работе с кристаллизующимися растворами. В автоматизированном лабораторном выпарном стенде абсорбер следующий за конденсатором и емкостью приема дистиллята охлаждается проточной водой.

В автоматизированном лабораторном выпарном стенде заполнение и опорожнение емкостей с продуктами осуществляется посредством вакуума, создаваемого воздушным эжектором с помощью центробежного компрессора и распределяемого по аппаратам с помощью системы электромагнитных клапанов. Для измерения массы растворов используются электронные весы или иные тензометрические датчики с выводом сигнала на ПК. Все емкости снабжены не менее чем четырьмя сигнализаторами уровня с калибровкой объемов заполняющих растворов для контроля показаний весов, показания которых используют для контроля дозаторов. Плотности растворов в емкостях рассчитываются исходя из показаний сигнализаторов уровней и массы раствора. Плотность кубового раствора и его проводимость измеряются плотномером и кондуктометром в пробоотборном накопителе с автоматическим сливом раствора в дозатор после очередного измерения. На линии подачи воздуха в абсорбер и линии выхода газа из абсорберов устанавливаются датчики расхода газа. На линии подачи исходного раствора, а также на выходе из конденсатора, абсорберов установлены проточные кондуктометры. Учет материального баланса осуществляется для азотной кислоты и суммы солей металлов, присутствующих в поступающих на стенд и выходящих из него растворах, путем измерения плотности и электропроводности растворов с помощью плотномеров и кондуктометров с обработкой сигнала. Для определения содержания солей тяжелых металлов используют гамма-абсорбциометр.

В автоматизированном лабораторном выпарном стенде концентрация какого-либо компонента в окрашенных растворах определяется спектрофотометрически в прочной проточной кювете с использованием оптического погружного датчика и обработкой его сигнала, обеспечивающей исключение влияния мутности раствора.

На Фиг. 3 представлена структурно-функциональная схема заявляемого изобретения, где:

1 - выпарной аппарат

3 - сепаратор

4 - циркуляционная труба -

5 - греющая камера

6 - парогенератор

7 - клапан сброса давления

8 - клапан конденсата

9 - аварийный клапан

10 - манометр

12 - нагреватель сепаратора

16 - емкость с исходным раствором

18 - конденсатор

19 - сборник дистиллята

21 - емкость кубового раствора

25.1, 25.2, 29.1-29.5 - весовые дозаторы

26 - электромагнитный клапан

28.1-28.5 - мерники

30.1 - 30.3 - абсорберы

31 - весовой дозатор с промежуточным пробоотборным накопителем

32, 33.1-33.5, 34.1-34.6 - весы

35.1, 35.2 - датчики расхода газа

36 - проточный плотномер

37, 38.1-38.5 - проточные кондуктометры

39.1-39.3 - емкость приема абсорбата

40 - емкость для хранения разделительной жидкости

41.1,41.2 - регуляторы давления

42 - датчик давления

43.1-43.3 - проточный термометр

44 - отборное устройство

45 - клапан

46 - клапан-переключатель

47 - уровнемер

48.1, 48.2 - турбокомпрессоры

Заявляемое изобретение включает в себя выпарной аппарат 1, снабженный выносной греющей камерой 5 и гидростатическим капиллярным плотномером-уровнемером для автоматизированного контроля и управления уровнем кубового раствора, парогенератор 6 и конденсатор 18, а также весовые дозаторы 25.1, 25.2, 29.1-29.5 для автоматизированной непрерывной подачи всех входящих потоков из мерников 16, 28.1-28.5 и измерения и фиксации скорости подачи, автоматизированный слив избытка кубового раствора весовым дозатором 31 в сочетании с измерением и регулированием электрической мощности парогенератора по температуре конденсируемого пара в греющей камере 5, также выпарной аппарат 1 снабжен патрубками для ввода реагента в его кубовую часть и флегмы на сменную насыпную насадку, удерживаемую перфорированной тарелкой в верхней его части, а его сепаратор 3 снабжен обогревателем, стенд снабжен абсорберами 30.1-30.3 газов, отходящих из выпарного аппарата и/или из сборника дистиллята, в каждый из которых подаются растворы реагентов из мерников 28.3 и 28.5 с помощью весовых дозаторов 29.3 и 29.5, в состав стенда дополнительно введены весовой дозатор для дозированного отбора из выпарного аппарата газовыделяющего кубового раствора 31, весы и/или тензодатчики для измерения и регистрации количества всех исходных и конечных продуктов работающего стенда путем измерения массы раствора в емкостях 32, 33.1-33.5, 34.1-34.5, а также устройства для определения солевого состава солесодержащих продуктов 36 и кондуктометры 38.1-38.5, 37 на линиях передачи всех продуктов, система электромагнитных клапанов для приема и передачи исходного и кубового растворов, а также абсорбатов, причем стенд выполнен с возможностью подключения к программно-техническому комплексу для учета и предсказания материального баланса по потокам и движению целевого компонента в реальном времени с возможностью выдачи информации на пульт оператора.

Необходимо более подробно описать структурные изменения стенда:

- система стабилизации напряжения поддерживает мощность парогенератора на заданном уровне с погрешностью не более 2% в пределах производительности выпарного аппарата;

- в его состав могут входить выпарные аппараты иной конструкции, в частности, с прямоточной греющей камерой с нисходящим или восходящим потоком;

- реагент подается в кубовую часть выпарного аппарата 1 под уровень раствора, причем кубовая часть выпарного аппарата обеспечивает необходимую задержку для протекания реакции;

- емкость 21 и клапан 26 для приема кубового раствора контролируемо обогревается при работе с кристаллизующимися растворами;

- следующий за конденсатором 18 и емкостью приема дистиллята 19 абсорбер 30.1 охлаждается проточной водой;

- заполнение и опорожнение емкостей с продуктами осуществляется посредством вакуума, создаваемого воздушными эжекторами с помощью центробежных компрессоров 48.1 и 48.2 и распределяемого по аппаратам с помощью системы электромагнитных клапанов;

- для измерения массы растворов используются электронные весы 32, 33.1-33.5, 34.1-34.5 с выводом сигнала на ПК;

- для этих целей же могут быть использованы тензометрические датчики с выводом сигнала на ПК;

- все емкости снабжены не менее чем четырьмя сигнализаторами уровня с калибровкой объемов заполняющих растворов для контроля показаний весов, показания которых используют для контроля дозаторов;

- плотности растворов в емкостях автоматически рассчитываются исходя из показаний сигнализаторов уровней и массы раствора;

- плотность кубового раствора и его проводимость измеряются проточными плотномером 36 и кондуктометром 37;

- на линии подачи воздуха в абсорбер 30.1 и линии выхода газа из абсорбера 30.2 устанавливаются датчики расхода газа 35.1, 35.2.

- на выходе из конденсатора, абсорберов а также на линии ввода в аппарат исходного раствора устанавливаются проточные кондуктометры 38.1-38.5.

- Флегма из абсорберов 30.1-30.3 собирается в емкости 39.1-39.3, которые находятся на весах 33.3-33.5.

- учет материального баланса осуществляется для азотной кислоты и суммы солей металлов, присутствующих в поступающих на стенд и выходящих из него растворах, путем измерения плотности и электропроводности растворов с помощью плотномера 36 и кондуктометров 37, 38.1-38.5 с обработкой сигнала;

- для определения содержания солей тяжелых металлов используют гамма-абсорбциометр;

- концентрация какого-либо компонента в окрашенных растворах определяется в протоке спектрофотометрически в прочной проточной кювете с использованием оптического погружного датчика и обработкой его сигнала, обеспечивающей исключение влияния мутности раствора и оптического погружного датчика.

- Стенд и его программное обеспечение являются открытыми системами, позволяющими как расширение стенда, так и частичное отключение его узлов, в первую очередь на подачах флегмы и реагентов, а также на линии отходящих газов путем транзита без их обработки.;

- Стенд пригоден для работы с различными типами выпарных аппаратов данной производительности, в частности, с прямоточным выпарным аппаратом с нисходящим потоком, особенно удобным при упаривании осадкообразующих растворов [Рябков Д.В., Андреева Е.В., Мишина Н.Е., Макарычев-Михайлов М.Н., Пузиков Е.А., Зильберман Б.Я. Исследование процессов концентрирования модельных растворов РАО в прямоточных испарителях // Химическая технология, 2011, №9, с. 556-563.].

- Сепаратор 3, расположенный над кубовой частью, обогревается нагревателем 12 для компенсации теплопотерь и проведения экспериментов по выпарке в бесфлегмовом режиме, что позволяет работать без теплоизоляции или термостатирования каньона.

- Автоматическое регулирование малых расходов растворов, особенно на линии слива кубового раствора в случае пенящихся растворов, осуществляется с помощью весового дозатора [Гофман Ф.Э., Гофман Р.Д., Евдокимов А.Г., Голецкий Н.Д., Родионов С.А., Тимошук А.А., Кудинов А.С., Рябков Д.В., Зильберман Б.Я., Автоматизация радиохимических экстракционных стендов. Научная конференция «Развитие идей В.И. Вернадского в современной российской науке». Сборник трудов. (Санкт-Петербург, 17-19.10.2013). с. 219-224], контроль расхода растворов ведется по сигналам тензометрического датчика, на котором закреплена весовая емкость, связанная с внешними линиями через упругие спиралевидные полиэтиленовые трубки.

- Весовые дозаторы 25.1, 25.2, 29.1-29.5, 31 представляют из себя весовую емкость, подвешенную к тензометрическому датчику, и исполнительный электромагнитный клапан.

- Емкость исходного 16 и кубового 21 растворов снабжены плотномерами-уровнемерами.

- Перелив реагентов из емкостей в весовые емкости дозаторов осуществляется подачей избыточного давления в емкости хранения реагентов; линии, по которым в емкости нагнетается давление, снабжены регуляторами давления и сигнализаторами на случай падения давления в линии.

- Емкость для хранения разделительной жидкости 40 снабжена сигнализатором, на случай слишком малого уровня разделительной жидкости.

- Постоянный уровень кубового раствора в аппарате поддерживается за счет изменения расхода питающего раствора и программно сопряженного с ним расходов дополнительных реагентов, подающихся в аппарат 1, и кубового раствора.

- Перелив реагентов из емкостей в весовые емкости дозаторов осуществляется подачей избыточного давления в емкости хранения реагентов.

- Линии, по которым в емкости нагнетается давление, снабжены регуляторами давления 41.1, 41.2 и сигнализаторами 42 на случай падения давления в линии.;

- Емкость для хранения разделительной жидкости снабжена сигнализатором, на случай слишком малого уровня разделительной жидкости.

- Для контроля работы конденсатора на линии отвода конденсата, а также на линии подачи воды на его охлаждение перед конденсатором и после него установлены приборы измерения температуры 43.1-43.3.

Работа на автоматизированном лабораторном выпарном стенде осуществляется следующим образом:

Включают Программное обеспечение на пульте оператора и проверяют наличие реактивов в емкостях 16, 28.1-28.5 и разделительной жидкости в емкости 40. Включают подачу воздуха и охлаждающей воды. Включают компрессор подачи давления в линию дозировки реагентов и выставляют нужный уровень давления с помощью пневмозадатчиков 41.1, 41.2. Проверяют наличие реагентов в линиях их подачи. Проверяют наличия воды в парогенераторе 6. Запускают плотномер-уровнемер с пульта оператора. Включают парогенератор 3 и нагреватель 12 сепаратора 3. При достижении 50 кПа стравливают пар через клапан 7. Загружают модельный стартовый раствор в выпарной аппарат 1. Запускают подачу реагентов в абсорберы 30.1-30.3 и в сепаратор 3 выпарного аппарата. После начала кипения раствора в аппарате начинают подачу исходного раствора и реагентов в выпарной аппарат в соответствии с программой эксперимента. Отбирают пробы согласно программе эксперимента.

Сказанное выше можно подтвердить примерами, полученными при упаривании модельных растворов на стендовой установке.

Пример 1 (по аналогу).

Структурная схема автоматизированного стенда выпарки показана на фиг. 1. Основным оборудованием стенда являлся лабораторный циркуляционный выпарной аппарат 1 с выносной греющей камерой 5, снабженный смотровым стеклом 2 для контроля уровня кубового раствора. Нагрев греющей камеры производился от парогенератора 6 с предохранительным клапаном 9, работающего в замкнутом контуре. Конденсат греющего пара возвращался в парогенератор самотеком через регулирующий вентиль 8. Давление пара на выходе парогенератора контролировалось стрелочным манометром 10. Нагрев тэнов парогенератора регулировали ЛАТРом 11 и контролировали вольтметром. Сепаратор выпарного аппарата обогревался через намотанную на него спираль 12, на которую через ЛАТР 14, трансформатор 13 и предохранитель 15 подавали напряжение, контролируемое по вольтметру.

Исходный раствор дозировали перистальтическим дозатором 17 из полупрозрачной емкости 16 с теневым наблюдением уровня. Расход измеряли вручную с использованием мерного цилиндра и секундомера. Кубовый раствор сливали в переносную приемную емкость 21 через вентиль 20 вручную по Мере возрастания уровня кубового раствора в смотровом стекле.

Вторичный пар конденсировался в конденсаторе 18, который был подключен к технологическому водоснабжению. Конденсат собирали в переносную емкость 19.

Пример 2 (по прототипу).

Схема стенда приведена на фиг. 2, а ее описание приведено в тексте. В отличие от примера 1 у выпарного аппарата отсутствовали смотровое стекло и обогрев сепаратора, но осуществлялось релейное регулирование электрической мощности по величине температуры поверхности рубашки греющей камеры, которая измерялась термометром сопротивления Т 24 и регистрировалась регулятором температуры (ТРМ201-Р фирмы «Овен»). Выходное реле регулятора подключалось к нагревателям парогенератора через один из двух автотрансформаторов (источники напряжений питания Umin и Umax).

Управление уровнем и плотностью осуществлялось автоматически в двух режимах. В режиме пуска выпарного аппарата после его первоначального заполнения исходным раствором и начала процесса выпарки управление уровнем шло за счет изменения расхода исходного раствора, при этом плотность кубового раствора увеличивалась, его слив не производился. После того, как плотность достигала установленной величины, система управления переходила к стабилизации уровня кубового раствора за счет регулирования слива с одновременной стабилизацией величины его плотности путем регулированию расхода исходного раствора (стационарный режим работы).

В качестве исходного был приготовлен раствор углекислого калия с плотностью 1,063 г/см3 (~0,5 моль/л). Заданная кратность упаривания в первом половине эксперимента составляла ~ 8. При ее достижении начался слив раствора из куба выпарного аппарата. Эксперимент проводился в течение шести часов.

Пример 3 (по предлагаемому изобретению).

В заявляемом изобретении (фигура 3) выпарной аппарат циркуляционного типа 1, парогенератор 6, конденсатор 18 и система дозирования исходного раствора (мерник 16, стоящий на весах 32 и весовые дозаторы 25.1, 25.2), причем выпарной аппарат 1 снабжен системой обогрева 12 сепаратора 3. Кроме того, имеется дополнительный ввод реагентов с помощью весовых дозаторов 29.1 и 29.2 в куб выпарного аппарата 1, через которые может непрерывно подаваться из мерников 28.1, 28.2 восстанавливающий реагент для разрушения незасоляющих компонентов ВАО или САО, в частности нитрата аммония или свободной азотной кислоты. Образующиеся при этом окислы азота поглощаются в абсорбере 30.1, орошаемом окислительной флегмой (например, раствором перекиси водорода), которую дозируют с помощью весового дозатора 29.5 из отдельного мерника 28.5.

Прошедший насквозь углекислый газ поступает в следующий по тракту щелочной абсорбер 30.2, обвязанный аналогичным образом. Все выходящие потоки собираются раздельно в емкостях 21, 19, 39.1,39.2, которые стоят на электронных весах 33.1, 33.2, 33,3, 33.4, что позволяет контролировать движение и всех растворов, расход которых «определяется весовыми дозаторами 25.1, 25.2, 29.1-29.5, и сводить на ПК баланс по массам, а при наличии в них и/или на линии плотномера 36 и/или кондуктометров 37, 38.1-38.2, то и по объемным расходам, а также по целевому компоненту (в данном случае по азотной кислоте).

Паропроизводительность выпарного аппарата 1 регулируют по уровню кубового раствора, влияя на электрическую мощность парогенератора 6 с помощью системы управления нагрева парогенератора, снабженного стабилизатором мощности.

Ввиду малого расхода кубового раствора для контроля его состава устанавливают отборное устройство 44, накапливающее порцию раствора в течение заданного времени, которая после измерения с помощью клапана 45 автоматически сливается.

В случае упаривания окрашенных растворов или с повышенной плотностью компонента для контроля состава кубового раствора могут быть установлен в кювете погружной оптический датчик или гамма-абсорбциометр.

Пример 4

Стенд работает, как описано в примере 3, но между выпарным аппаратом и конденсатором в исследовательских целях устанавливается дополнительный абсорбер 30.3, орошаемый нейтральной или окислительной флегмой (Фигура 3), подаваемой из мерника 28.3 с весовым дозатором 29.3 через переключатель 46, которая выводится из абсорбера в отдельную приемную емкость 39.3, установленную на весах 33.5. Концентрация кислоты в абсорбате контролируется кондуктометром 38.4. В интерфейсе программы компьютерного обслуживания стенда открывается новое окно.

Пример 5

Стенд работает, как описано в примере 3, но в исходном растворе содержится летучий компонент, подлежащий разрушению. В этом случае в выпарной аппарат устанавливают стакан со спиральной проволочной насадкой 3, в который из отдельного мерника 28.4 с помощью отдельного дозатора 29.4 подается флегма, которая при необходимости может содержать специальный реагент.

Пример 6

При исследовании упаривания кристаллизующихся растворов может быть установлен прямоточный выпарной аппарат с нисходящим потоком, который отличается от упоминаемого в Примере 3 отсутствием циркуляционной трубы 4. Его работа отличается отсутствием регулирования уровня кубового раствора.

1. Автоматизированный лабораторный выпарной стенд, предназначенный для работы с токсичными и радиоактивными растворами, включающий выпарной аппарат, снабженный выносной греющей камерой и гидростатическим капиллярным плотномером-уровнемером для автоматизированного контроля и управления уровнем кубового раствора, парогенератор и конденсатор, а также весовые дозаторы для автоматизированной непрерывной подачи всех входящих потоков из мерников и измерения и фиксации скорости подачи, автоматизированный слив избытка кубового раствора в сочетании с измерением и регулированием электрической мощности парогенератора по температуре конденсируемого пара в греющей камере, отличающийся тем, что выпарной аппарат снабжен патрубками для ввода реагента в его кубовую часть и флегмы на сменную насыпную насадку, удерживаемую перфорированной тарелкой в верхней его части, а его сепаратор снабжен обогревателем, стенд снабжен, по меньшей мере, одним абсорбером газов, отходящих из выпарного аппарата и/или из сборника дистиллята, в каждый из которых подаются растворы реагентов из мерников, в состав стенда дополнительно введены весовой дозатор для дозированного отбора из выпарного аппарата газовыделяющего кубового раствора, весы и/или тензодатчики для измерения и регистрации количества всех исходных и конечных продуктов работающего стенда путем измерения массы раствора в емкостях, а также устройства для определения солевого состава солесодержащих продуктов и кондуктометры на линиях передачи всех продуктов, система электромагнитных клапанов для приема и передачи исходного и кубового растворов, а также абсорбатов, измеритель скорости выходящего газового потока, прецизионный стабилизатор электропитания парогенератора, причем стенд выполнен с возможностью подключения к программно-техническому комплексу для учета и предсказания материального баланса по потокам и движению целевого компонента в реальном времени с возможностью выдачи информации на пульт оператора.

2. Выпарной стенд по п. 1, отличающийся тем, что в его состав могут входить выпарные аппараты иной конструкции, в частности, с прямоточной греющей камерой с нисходящим или восходящим потоком.

3. Выпарной стенд по п. 1, отличающийся тем, что реагент подается в кубовую часть под уровень раствора, причем размеры кубовой части выпарного аппарата обеспечивают необходимую задержку раствора, необходимую для протекания реакции.

4. Выпарной стенд по п. 1, отличающийся тем, что емкость и клапан для приема кубового раствора контролируемо обогреваются при работе с кристаллизующимися растворами.

5. Выпарной стенд по п. 1, отличающийся тем, что абсорбер, следующий за конденсатором и емкостью приема дистиллята, охлаждают проточной водой.

6. Выпарной стенд по п. 1, отличающийся тем, что заполнение и опорожнение емкостей с продуктами осуществляется посредством вакуума, создаваемого воздушным эжектором с помощью центробежного компрессора и распределяемого по аппаратам с помощью системы электромагнитных клапанов.

7. Выпарной стенд по п. 1, отличающийся тем, что плотности растворов в емкостях рассчитываются исходя из показаний уровнемера или не менее четырех сигнализаторов уровней и массы раствора, для измерения которой используются электронные весы или иные тензометрические датчики с выводом сигнала на ПК.

8. Выпарной стенд по пп. 1 и 7, отличающийся тем, что учет материального баланса осуществляется для азотной кислоты и суммы солей металлов, присутствующих в поступающих на стенд и выходящих из него растворах, путем измерения плотности и электропроводности растворов, в том числе с помощью плотномеров и кондуктометров с обработкой сигнала.

9. Выпарной стенд по п. 1, отличающийся тем, что плотность кубового раствора и его проводимость измеряются плотномером и кондуктометром в пробоотборном накопителе с автоматическим сливом раствора в дозатор после очередного измерения.

10. Выпарной стенд по п. 1, отличающийся тем, что на линии подачи исходного раствора в выпарной аппарат и выходе из конденсатора, абсорберов и скруббера устанавливаются проточные кондуктометры.

11. Выпарной стенд по п. 1, отличающийся тем, что содержание солей тяжелых металлов в растворах определяют с помощью гамма-абсорбциометр, а в случае окрашенных растворов - спектрофотометрически в прочной проточной кювете с использованием оптического погружного датчика и обработкой его сигнала, обеспечивающей исключение влияния мутности раствора и оптического погружного датчика.



 

Похожие патенты:

Изобретение относится к теплоэнергетике и экологии и может быть использовано для опреснения морской воды и выработки электроэнергии. Комплексная установка для опреснения морской воды и выработки электроэнергии содержит трубопровод 9 холодной морской воды, адиабатный многоступенчатый испаритель, внешний теплообменник 20, трубопровод отвода дистиллята 30, трубопровод отвода рассола 32, газотурбинную установку 1, паровой котел-утилизатор 6, противодавленческую паровую турбину 4 с регулируемыми отборами пара высокого и низкого давления, деаэратор 7, паропровод 3 перегретого пара, химводоочистку 33, трубопровод конденсата 27, трубопроводы подпиточной 16 и подогретой 18 морской воды, теплообменник 22 предварительного подогрева морской воды, конденсатор 26 вторичного пара, пароструйную эжекторную установку 19.

Изобретение относится к способу и установке для обработки, в частности к обработке шлака для извлечения из него одного или более полезных компонентов. Способ обработки материала, который представляет собой верхний слой из процесса плавки металла, причем указанный верхний слой представляет собой шлак и содержит одну или более солей и один или более металлов, включающий: а) подачу шлака в пресс для шлака и прессование шлака; б) подачу прессованного шлака на стадию измельчения, включающую стадию дробления; где стадии (а) и (б) осуществляют до того, как температура шлака, извлеченного из печи, понизится ниже 350°C; указанный способ также включает: в) подачу шлака на стадию выщелачивания; г) получение продукта выщелачивания со стадии выщелачивания; д) подачу продукта выщелачивания на стадию распылительной сушки; е) получение твердого вещества со стадии распылительной сушки.

Изобретение относится к оборудованию для пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности.

Изобретение относится к оборудованию для пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности.

Изобретение относится к оборудованию для пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности.

Изобретение относится к оборудованию для пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности.

Изобретение может быть использовано при глубокой переработке угля, при разработке месторождений нефти и газа, в нефтепереработке и в нефтехимическом производстве.

Изобретение относится к области переработки промышленных и бытовых отходов и может использоваться для сухой очистки дымовых газов от кислых компонентов методов хемосорбции в процессах термического обезвреживания промышленных и бытовых отходов.

Изобретение относится к области очистки отработавших газов. Зонированный каталитический композит для потока выхлопных газов двигателя внутреннего сгорания включает монолитный носитель, состоящий из множества продольных каналов.

Группа изобретений относится к очистке и получению газов. Для получения сероводорода H2S приводят в контакт водород и серу в условиях, достаточных для получения сырьевого потока, содержащего от 80 мас.% сероводорода и серосодержащие примеси.

Изобретение может быть использовано в теплоэнергетике и экологии. Установка для опреснения морской воды и выработки электроэнергии содержит газотурбинную установку 1 с компрессором, камерой сгорания, газовой турбиной и электрогенератором 2, паропровод перегретого пара 3, паровую турбину 4 с регулируемыми отборами пара высокого и низкого давления, электрогенератор 5, паровой котел-утилизатор 6, деаэратор 7, конденсатор паровой турбины 8, трубопровод морской воды 9, трубопровод (систему) рециркуляции с насосом 10, трубопровод подпиточной химочищенной воды 15, двухступенчатый пароструйный эжектор, включающий пароструйный эжектор высокого давления 16 и пароструйный эжектор низкого давления 17, трубопроводы перепуска паровоздушной смеси 20, внешний теплообменник 21, трубопровод подогретой морской воды 22, двухходовые кожухотрубные конденсаторы вторичного пара 24 адиабатного многоступенчатого испарителя, сборные камеры дистиллята 25 адиабатного многоступенчатого испарителя, трубопровод дистиллята 27, трубы дроссельно-распылительного устройства 28 адиабатного многоступенчатого испарителя, приемники рассола 29 адиабатного многоступенчатого испарителя, химводоочистку 30, трубопровод сброса рассола 31. Изобретение позволяет повысить тепловую экономичность установки и обеспечить экономичное опреснение морской воды и выработку электроэнергии для энергоснабжения установки и внешних потребителей. 1 ил.

Описана выхлопная система, предназначенная для обработки выхлопных газов двигателя внутреннего сгорания. Система включает модифицированную ловушку NOx в условиях обедненной смеси (lean NOx trap - LNT), систему впрыска мочевины и катализатор аммиак-селективного каталитического восстановления. Модифицированная LNT включает первый слой и второй слой. Первый слой включает компонент - адсорбент NOx и один или более металлов платиновой группы. Второй слой включает зону катализатора окисления дизеля и зону окисления NO. Зона катализатора окисления дизеля включает металл платиновой группы, цеолит и, необязательно, щелочноземельный металл. Зона окисления NO включает металл платиновой группы и носитель. Модифицированная LNT накапливает NOx при температуре менее примерно 200°С и высвобождает при температуре более примерно 200°С. Также описаны модифицированная LNT и способ использования модифицированной LNT. 3 н. и 16 з.п. ф-лы, 2 ил.

Способ относится к аналитической химии и может быть использован для разделения компонентов в растворе и количественного определения состава смеси. Хроматографический способ разделения компонентов смеси в растворе включает подачу подвижной фазы с введенной в нее смесью разделяемых компонентов в хроматографическую колонку хроматографа, содержащую, по крайней мере, одну неподвижную фазу, выполненную из пористого материала, и последующее измерение концентраций разделенных компонентов смеси. Разделяемые компоненты смеси представляют собой молекулы органических красителей. В качестве неподвижной фазы используют прозрачную для оптического излучения ультрафиолетового, инфракрасного и видимого диапазонов среду. При прохождении через хроматографическую колонку контролируемой смеси ее последовательно облучают одним или несколькими источниками непрерывного лазерного излучения с длиной волны, соответствующей области поглощения одного из компонентов разделяемой смеси. Плотность мощности используемого лазерного излучения превышает пороговое значение 5 Вт/см2. Изобретение позволяет повысить эффективность разделения, сократить время, затрачиваемое на процесс разделения. 5 ил.

Изобретение относится к катализатору окисления для обработки выхлопных газов, производимых дизельным двигателем, включающему носитель и каталитический слой, включающий первый подложечный материал носителя, палладий и платину. Причем каталитический слой находится на поверхности носителя и имеет неравномерное распределение палладия в направлении, перпендикулярном поверхности носителя, так что количество палладия уменьшается в перпендикулярном направлении по отношению к поверхности носителя. И где каталитический слой имеет или (а) однородное распределение платины в направлении, перпендикулярном поверхности носителя, или (b) неоднородное распределение платины в направлении, перпендикулярном поверхности носителя, таким образом, что количество платины увеличивается в направлении, перпендикулярном поверхности носителя. Также изобретение относится к выхлопной системе и к транспортному средству, включающим указанный катализатор. Технический результат – превосходная окислительная активность в отношении монооксида углерода (CO) и углеводородов (HC). 3 н. и 7 з.п. ф-лы, 3 ил., 2 табл., 4 пр.

Изобретение относится к области рационального использования природных ресурсов и может быть использовано в газодобывающей, газоперерабатывающей, газохимической и других отраслях промышленности. Комплекс добычи, сбора, транспорта и переработки природных газов группы месторождений с разным содержанием этана включает звено добычи газа, звено подготовки газа, звено сбора газа, звено сбора нестабильного конденсата, звено переработки конденсата, звено транспорта газа, звено переработки газа и дополнительную установку подготовки газа, обеспечивая в зависимости от стадии разработки месторождений и направления реализации извлекаемой продукции вариативное функционирование на стадии начала освоения месторождений, при значительных объемах добычи жирного газа, и на стадии падения объемов добычи жирного газа. Заявляемое изобретение позволяет формировать оптимальную технологическую схему комплекса и технологический режим работы отдельных звеньев, блоков, установок и аппаратов, входящих в состав комплекса. 4 з.п. ф-лы, 2 ил.

Изобретение относится к установкам для проведения учебных занятий по дисциплинам: «Техносферная безопасность», «Технологические процессы и загрязняющие выбросы», «Промышленная экология», «Охрана окружающей среды в теплотехнологиях». Технический результат заключается в расширении арсенала технических средств для наглядного изучения влияния очистки продуктов сгорания твердого топлива с целью снижения концентрации взвешенных частиц и двуокиси серы в уходящих газах. Для достижения технического результата предложена лабораторная установка, включающая камеру сгорания (1) с загрузочным окном сверху (3), золоуловитель (6), снабженный фильтром (7), и адсорбер (10), последовательно сообщающиеся между собой с помощью патрубков с пробоотборниками (5, 9, 14). Камера сгорания (1) содержит установленный в ней через загрузочное окно (3) тигель (4) с предварительно разожженным твердым топливом, патрубок для подачи воздуха в камеру сгорания, снабженный заслонкой (2), и патрубок для выхода газов из камеры сгорания с пробоотборником (5), сообщающийся с фильтром (7) золоуловителя (6), размещенным в его корпусе, выполненном из стекла. Фильтр (7) выполнен в виде стеклянного полого шара с отверстиями для выхода газов. Сверху корпус золоуловителя снабжен крышкой (8) в виде металлической пластинки, в которой через выполненное в ней отверстие смонтирован патрубок с пробоотборником (9) для выходящих газов, соединенный с адсорбером (10), предназначенным для поглощения двуокиси серы. В основании адсорбера установлены один над другим два усеченных конуса (11, 12), между коническими стенками и верхними частями которых образовано пространство, предназначенное для заполнения сверху насадкой из активированного угля через загрузочное отверстие, выполненное в верхнем конусе. Причем к большему основанию нижнего конуса снаружи присоединено кольцо с бортиком по внешнему периметру кольца для фиксации верхнего конуса относительно нижнего конуса, а в конических стенках и в верхних частях конусов 11, 12 выполнены отверстия для прохождения потока газа. Корпус адсорбера выполнен из стекла и снабжен патрубком для удаления очищенных продуктов сгорания в вытяжку с установленным на нем пробоотборником (14). Кроме того, на внешней поверхности камеры сгорания (1), золоуловителя (6) и адсорбера (10) установлена съемная тепловая изоляция. 1 ил.

Изобретение относится к оборудованию для проведения адсорбционного разделения бутановой фракции на изобутан и н-бутан на адсорбенте расположенном вертикально по высоте адсорбера. Технической задачей, на решение которой направлено изобретение, является повышение производительности разделения бутановой фракции. Указанная задача достигается тем, что в вертикальном адсорбере для разделения бутановой фракции, содержащем цилиндрический корпус с крышкой и днищем, при этом в крышке смонтированы загрузочный люк, патрубок для подачи исходной смеси бутана с распределительной сеткой, патрубок для отвода н-бутана при десорбции и патрубок для предохранительного клапана, а в средней части корпуса установлены балки с опорами, поддерживающие колосниковую решетку, на которой уложены два слоя сетки из нержавеющей стали, при этом слой адсорбента расположен между двумя слоями сетки из нержавеющей стали и сеткой, на которой расположены грузы для предотвращения уноса адсорбента при десорбции, при этом в корпусе расположен разгрузочный люк, а в днище смонтирован смотровой люк, патрубок для подачи метановой фракции при десорбции и патрубок для отвода изобутана при адсорбции и отработавшего газа - азота при охлаждении, который расположен на конической поверхности днища, согласно изобретению, адсорбер оборудован генератором облучения исходной смеси наносекундными электромагнитными импульсами, при этом электродами для облучения являются металлические сегменты, закрепленные на внутренней поверхности патрубка для подачи исходной смеси, контактирующие с поступающей исходной смесью и изолированные от патрубка, а мощность одного импульса составляет не менее 0,5 МВт. 2 ил.

Предложены способы и системы для обеспечения протекания отработавших газов через второй охладитель, расположенный ниже по потоку от первого охладителя и выше по потоку от впускной системы в канале рециркуляции отработавших газов, и извлечения конденсата для впрыска воды из конденсата в охлажденные отработавшие газы, покидающие второй охладитель. В одном примере, способ может включать в себя регулирование количества отработавших газов, протекающих через второй охладитель, на основе количества воды, хранящейся в резервуаре для воды в системе впрыска воды, и условий работы двигателя. Кроме того, способ может включать в себя выборочное протекание отработавших газов из второго охладителя к местоположению выше по потоку или ниже по потоку от компрессора в ответ на условия работы двигателя. 3 н. и 15 з.п. ф-лы, 9 ил.

Изобретение относится к химическим добавкам, применимым в качестве ингибиторов и поглотителей. В данном изобретении раскрыты удаляющие примеси и ингибирующие гидрат многофункциональные композиции, используемые в областях применения, относящихся к добыче, транспортировке, хранению и разделению сырой нефти и природного газа. Способ удаления примеси сероводорода и предотвращения образования гидратов в среде включает добавление многофункциональной композиции к среде. Многофункциональная композиция содержит поглотитель, ингибитор гидратообразования и, необязательно, кислоту. Изобретение обеспечивает эффективную очистку углеводородной продукции от сероводорода при одновременном предотвращении гидратообразования, уменьшении коррозии технологического оборудования, повышении экологической безопасности и снижении энергозатрат. 3 н. и 17 з.п. ф-лы, 2 ил.
Наверх