Способ очистки пирогаза

Изобретение относится к области нефтехимии, а именно к способам получения этилена пиролизом углеводородного сырья, в частности, в стадии подготовки продуктов пиролиза к дальнейшей переработке. Способ очистки пирогаза осуществляется прямым контактом с циркуляционным закалочным маслом в колонке первичной ректификации, при этом в циркуляционную систему закалочного масла добавляют бутил-бензольную фракцию в количестве 0,2-0,3% мас. от сырья пиролиза. Технический результат – улучшение показателей процесса очистки пирогаза снижение процесса укрупнениях частиц кокса и сажи за счет растворения слюдистых соединений в закалочном масле, снижение образования отложений в аппаратах и трубопроводах и, соответственно, сокращение потребления свежего закалочного масла, а также его потерь с использованием отходов производства. 1 з.п. ф-лы., 1 ил., 2 табл., 2 пр.

 

Изобретение относится к области нефтехимии, а именно - к способам получения этилена пиролизом углеводородного сырья, в частности, к стадии подготовки продуктов пиролиза к дальнейшей переработке.

Стадия подготовки продуктов пиролиза к дальнейшей переработке включает в себя, наряду с прочими стадиями, охлаждение и очистку пирогаза от смолистых соединений, сажи, кокса и т.д. Первоначальная очистка пирогаза закалочным маслом происходит в колонне первичной ректификации и одной из причин ее нестабильной работы является накопление смолистых соединений в закалочном масле, а также образование отложений во внутренних устройствах колонн, теплообменниках и трубопроводах. Поэтому в настоящее время особо остро стоит проблема снижения образования отложений смол и кокса в оборудованиях производства олефинов.

Известен основной способ подготовки пирогаз к дальнейшей переработке (Т.Н. Мухина и др. "Пиролиз углеводородного сырья": М., "Химия", 1987: с. 143-144). Парогазовая смсь, охладившись до 175-180°С в результате смещения с циркулирующим котельным топливом, поступает в колонну первичного фракционирования, где охлаждается и очищается от смолистых соединений и кокса. Из куба этой колонны отводится обезвоженная тяжелая фракция - котельное топливо, а сверху - более легкие фракции. Поток, уходящий с верха колонны первичной ректификации:, охлаждается в теплообменниках до 40°С и поступает в сепаратор, где пирогаз отделяется от сконденсировавшихся углеводородов и воды, которые затем разделяются в отстойнике. Часть пироконденсата подается в колонну первичной ректификации, в качестве орошения.

В описанном способе в качестве углеводородного сырья используется этановая фракция, в которой содержание кокса и тяжелых смол незначительно и для их удаления достаточно легкой фракции, образовавшейся Б процессе пиролиза. Однако при использовании в качестве углеводородного сырья пиролиза пропана и бутана, склонных к повышенному коксообразованию, количество образовавшегося в процессе пиролиза легкой фракции недостаточно для промывки пирогаза от кокса, тяжелых смол и для поддержания вязкости закалочного масла в требуемых пределах. В результате в систему требуется вводить дополнительное количество свежего закалочного масла, что приводит к увеличению затрат на производство.

Известен способ охлаждения и очистки пирогаза закалочным маслом (патент РФ №1181303, опубл. 20.12.1995 г.). Пирогаз после его охлаждения до 450°С и смешения с циркулирующим закалочным маслом поступает в колонну разделения, где происходит очистка пирогаза от смолистых соединений закалочным маслом, которое требует дополнительной очистки. Очистка загрязненного закалочного масла осуществляется при использовании изопентана или н-пентана, а также их смесей, в результате чего происходит высаживание смол из циркулирующего закалочного масла. Недостатком данного способа является сложность технологической схемы и условий осуществления процесса охлаждения и очистки пирогаза, обусловленные проведением большого количества дополнительных промежуточных стадий, что приводит к дополнительным материальным затратам. Кроме того, введение в цикл очистки закалочного масла пентана или изопентана может привести к образованию взрывоопасных газовых выбросов.

В патенте РФ №2215774, опубл. 10.11.2003 г., выявлен способ охлаждения за подготовки продуктов пиролиза углеводородного сырья к компрессии и газоразделению, включающий последовательное охлаждение в закалочно-испарительных аппаратах, в колонне первичного фракционирования и в колонне водной промывки. В поток кубового продукта колонны первичного фракционирования, подающийся на охлаждение продуктов пиролиза прямым контактом и в виде орошения в среднюю часть колонны первичного фракционирования, добавляют фракцию углеводородов, выкипающих внутри интервала температур 160-380°С, а на орошение верхней части колонны первичного фракционирования добавляют фракцию углеводородов, выкипающих внутри интервала температур 35-190°С.

Описанный способ характеризуется сложностью технологической схемы, обусловленной включением в технологию охлаждения и подготовки продуктов пиролиза к компрессии и газоразделению колонны водной промывки пирогаза. Добавка фракции углеводородов: выкипающих внутри интервала температур 160-380°С, составляет 2,5-6,0% мас. от сырья пиролиза, что приводит к увеличению затрат. Кроме того, добавка фракции углеводородов, выкипающих внутри интервала температур 160-380°С, в закалочное масло увеличивает вязкость продукта, усложняя откачку из системы, что приводит к забивке оборудования.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом) является способ ступенчатого охлаждения и очистки пирогаза закалочным маслом (Патент РФ №2172763, опубл. 27.08.2001 г.). В описанном способе образовавшаяся смесь пирогаза и масла после стадии закалки поступает на разделение в колонку К-1. В качестве орошения в колонну К-1 подаются циркуляционное закалочное масло в количестве М3 и свежее закалочное масло в количестве М4, которое обеспечивает восполнение потерь циркуляционного масла и поддержание в нем содержания смол на заданном уровне. Снизу колонны К-1 отводится циркуляционное закалочное масло, которое после очистки от мелких частиц кокса в механическом фильтре Ф-1 и охлаждения в холодильнике Х-1 до 130°С возвращается в цикл масляной закалки. Количество подаваемого свежего закалочного масла и содержание смол и кокса в отводимом из системы отработанном масле можно регулировать за счет режима работы и размеров сепаратора СМ. В качестве свежего закалочного масла можно использовать товарное дизельное топливо, отвечающее требованиям ГОСТ 305-82.

Недостатком описанного способа является недостаточное растворение смолистых соединений в закалочном масле, которое приводит к образованию крупных агломератов сажи и кокса и, как следствие, к закоксовыделению аппаратов и к внеплановым остановам для очистки оборудования, а повышенная вязкость закалочного масла - к значительным затратам на расход свежего дизельного топлива, являющегося дорогостоящими товарным продуктом. Кроме того, введение свежего дизельного топлива приводит к увеличению затрат на производство.

Целью и техническим результатом заявленного технического решения является улучшение показателей процесса очистки пирогаза снижение процесса укрупнениях частиц кокса и сажи за счет растворения слюдистых соединений в закалочном масле, снижение образования отложений в аппаратах и трубопроводах и, соответственно, сокращение потребления свежего закалочного масла, а также его потерь с использованием отходов производства.

Указанный технический результат достигается способом очистки пирогаза от смолистых соединений и кокса прямым контактом пирогаза с циркуляционным закалочным маслом в колонне первичной ректификации, отличающийся тем, что в циркуляционную систему закалочного масла добавляют фракцию ароматических углеводородов. При этом в качестве фракции ароматических углеводородов используют побочный продукт производства получения фенола и ацетона - бутил-бензольную фракцию (ББФ).

Добавка ББФ в закалочное масло позволяет эффективно растворять смолистые соединения, в результате чего достигается предотвращение отложений в колонках первичной ректификации, теплообменных аппаратах и трубопроводах узла масляной очистки пирогаза. Кроме того, добавление ББФ Б закалочное масло позволяет сократить использование дорогостоящего товарного продукта - дизельного топлива; что приводит к значительной экономии материальных средств, так как ББФ является недорогим побочным продуктом производства фенола и ацетона.

Заявленное техническое решение поясняется приставленной схемой очистки пирогаза, где позиции обозначают следующее:

1 - поток пирогаза;

2 - колонна первичной ректификации;

3 - поток циркуляционного закалочного масла

4 - поток легкого масла;

5 - холодильник;

6 - сепаратор;

7, 9 - насосы;

8 - поток парового конденсата;

10 - механический фильтр;

11 - поток ББФ;

12 - поток свежего закалочного масла;

Пирогаз (поток 1) после водной и масляной закалки с температурой 150-220°С поступает в нижнюю часть колонны первичной ректификации 2. В нижней части колонны первичной ректификации 2 происходит промывка и очистка пирогаза от сажи и кокса циркуляционным закалочным маслом (поток 3), подаваемым в среднюю часть колонны, первичной ректификации 2 с температурой 130-190°С. В верхней части колонны первичной ректификации 2 происходит охлаждение пирогаза до температуры 95-130°С за счет испарения легкого масла (поток 4), подаваемого на орошение в верхнюю часть колонны первичной ректификации 2 с температурой 20-45°С.

Пирогаз (поток 1) сверху колонны первичной ректификации 2 поступает в холодильник 5 для окончательного охлаждения до температуры 20-35°С, при этом за счет снижения температуры пирогаза происходит конденсация легкого масла и водяных паров из пирогаза. Образующаяся смесь пирогаза, легкого масла и парового конденсата поступает в сепаратор 6, откуда пирогаз (поток 1) направляется на компримирование, легкое масло (поток 4) насосом 7 возвращается на орошение в верхнюю часть колонны первичной ректификации 2, а паровой конденсат (поток 8) после очистки направляется в другие технологические процессы.

Циркуляционное закалочное масло (поток 3) снизу колонны первичной ректификации 2 насосом 9 после очистки от сажи и кокса в механическом фильтре 10 отводится в аппараты масляной закалки. Часть закалочного масла (поток 3) возвращается на орошение в среднюю часть колонны первичной ректификации 2 для промывки пирогаза, при этом в циркуляционную систему закалочного масла подается ББФ (поток 11).

Вязкость циркуляционного закалочного масла поддерживается вводом свежего закалочного масла (поток 12).

Изобретение иллюстрируется следующим и примерами.

Пример 1. Способ очистки пирогаза по прототипу

Очистку пирогаза проводят в соответствии с описанной схемой, при этом в качестве циркуляционного закалочного масла используют дизельное топливо. По мере расходования вязкость закалочного масла растет, для его снижения в колонну подается дополнительное количество свежего закалочного масла в количестве 5-6% мас. от сырья пиролиза.

Пример 2. Способ очистки пирогаза по заявленному способу

Очистку пирогаза осуществляют также как и в примере 1, но в циркуляционную систему закалочного масла добавляют ББФ в количестве 0,2-0,3% масс. от сырья пиролиза.

При этом ввод свежего закалочного масла (дизельного топлива) сокращается до 2-3% масс. от сырья пиролиза.

Заявленный способ прошел промышленные испытания в ПАО «Казань оргсинтез».

Для доказательства достижения поставленной пели были проведены исследования по определению количества осадка, осаждающегося в отработанном дизельном топливе при хранении.

Результаты исследования по определению образования осадка при хранении отработанного закалочного масла (дизельного топлива) в течение 5, 15, 30 дней представлены Б таблице 1.

Сравнительный анализ образования осадков при хранении отработанного закалочного масла (дизельного топлива) по прототипу и заявленному способу показывает, что применение смеси дизельного топлива и ББФ приводит к лучшему растворению тяжелых пимролизных смол и количество образованного осадка значительно ниже, в среднем на 0,51% масс. Следовательно, образование отложений и кокса на образовании также должно быть значительно ниже, что подтвердилось при дальнейших исследованиях.

Проведенный визуальный осмотр состояния аппаратов узла масляной очистки пирогаз показал, что накопленные отложения в кубовой части колонн значительно меньше, по внешнему виду они рыхлые, мягкие, легко удаляются из системы.

ББФ является дешевым отходом производства фенола и ацетона. Тают образом, добавление ББФ в дизельное топливо приводит к снижению забивки оборудования коксом и снижению потребления дорогостоящего товарного продукта - дизельного топлива и, соответственно, удешевлению технологического процесса (таблица 2).

Из таблицы 2 видно, что потребление дизельного топлива уменьшилось за 34% в год, что является существенным снижением расхода дорогостоящего товарного продукта.

Таким образом, из изложенного выше можно сделать вывод, что заявителем достигнуты поставленные цели и заявленный технический результат - использование предлагаемого изобретения позволяет улучшить показатели очистки пирогаза от смолистых соединений, кокса и сажи. Добавление ББФ Б свежее закалочное масло снижает процесс укрупнения частиц кокса и сажи за счет эффективного растворения смолистых соединений в закалочном масле, позволяет снизить накопление отложений в аппаратах и трубопроводах в процессе эксплуатации, и, следовательно, снизить внеплановые остановы для очистки оборудования. Кроме того, использование ББФ позволяет снизить расход закалочного масла, в частности, дизельного топлива, являющегося дорогостоящим товарным продуктом.

1. Способ очистки пирогаза прямым контактом с циркуляционным закалочным маслом в колонне первичной ректификации, отличающийся тем, что в циркуляционную систему закалочного масла добавляют бутил-бензольную фракцию.

2. Способ по п.1, отличающийся тем, что добавку бутил-бензольной фракции осуществляют в количестве 0,2-0,3 % мас. от сырья пиролиза.



 

Похожие патенты:

Изобретение относится к теплообменнику для резкого охлаждения реакционного газа. Теплообменник содержит: охлаждаемую трубу с двойной стенкой, включающую в себя внутреннюю трубчатую стенку и наружную трубчатую стенку, причем указанная внутренняя трубчатая стенка предназначена для передачи указанного реакционного газа, подлежащего резкому охлаждению, при этом пространство, ограниченное указанной внутренней трубчатой стенкой и указанной наружной трубчатой стенкой, предназначено для передачи теплоносителя; трубчатый соединительный элемент, имеющий раздваивающееся в продольном направлении сечение и содержащий наружную часть стенки и внутреннюю часть стенки, образующие промежуточное пространство, заполненное огнеупорным наполнительным материалом, причем сходящийся конец указанного соединительного элемента предназначен для соединения с подающей трубой для неохлаждаемого реакционного газа, при этом указанная наружная часть стенки соединена с указанной наружной трубчатой стенкой указанной охлаждаемой трубы с двойной стенкой, причем между указанной внутренней частью стенки и указанной внутренней трубчатой стенкой указанной охлаждаемой трубы с двойной стенкой имеется осевой зазор; уплотнительный элемент, предназначенный для уплотнения указанного осевого зазора между указанной внутренней частью стенки и указанной внутренней трубчатой стенкой указанной охлаждаемой трубы с двойной стенкой; при этом кромка указанной внутренней трубчатой стенки, взаимодействующая с указанным уплотнительным элементом, содержит по меньшей мере частично скошенную кромку, включающую в себя скос, взаимодействующий с указанным уплотнительным элементом.

Изобретение относится к установкам переработки тяжелого углеводородного сырья в нефтеперерабатывающей промышленности. Изобретение касается установки замедленной конверсии, включающей блок фракционирования нагретого мазута в смеси с парами термической конверсии, оснащенный линиями вывода газа, легкой и среднедистиллятной фракций, тяжелой газойлевой фракции и остатка, крекинг-печь, оснащенную линией подачи смеси тяжелой газойлевой фракции и части остатка из первого реактора термической конверсии, которая соединена с сепаратором, оснащенным линией вывода паров и линией вывода остатка, на которой размещен первый реактор термической конверсии, оснащенный линией вывода паров и соединенный со вторым реактором термической конверсии линией подачи остатка, к которой примыкают линия вывода части остатка в линию подачи тяжелой газойлевой фракции в крекинг-печь и линия вывода паров из сепаратора, при этом второй реактор термической конверсии оснащен линиями вывода паров и остатка.
Изобретение относится к регулированию содержания серы, присутствующей как сера или соединение серы в потоке исходного углеводородного материала при осуществлении дегидрогенизации углеводорода (углеводородов) (например, пропана), содержащегося в потоке исходного углеводородного материала, до его/их соответствующего олефина (например, пропилена, когда углеводородом является пропан) без обработки потока исходного материала десульфуризацией до того, как он контактирует с псевдоожижающимся катализатором дегидрогенизации, который является как агентом десульфуризации, так и катализатором дегидрогенизации и содержит галлий и платину на глиноземном или глиноземном-кремнеземном носителе катализатора с необязательным щелочным металлом или щелочно-земельным металлом, таким как калий.

Изобретение раскрывает способ получения котельного топлива, включающий вакуумную ректификацию прямогонного мазута с получением утяжеленного гудрона, металлизированной фракции вакуумной ректификации и фракции вакуумного газойля, с последующим висбрекингом утяжеленного гудрона с получением комбинированного продукта висбрекинга, при этом для получения котельного топлива смешивают гудрон утяжеленный, металлизированную фракцию вакуумной ректификации мазута, разбавитель - прямогонное дизельное топливо фракции 160-360°С, комбинированный продукт висбрекинга, характеризующийся тем, что в процессе вакуумной ректификации прямогонного мазута дополнительно выделяют фракцию ректификации прямогонного мазута с температурой кипения 360-390°С и используют ее в качестве дополнительного компонента разбавителя, в котельное топливо дополнительно вводят фракцию каталитического газойля с температурой кипения 190-550°С при следующем соотношении компонентов смешения в котельном топливе в мас.%: гудрон утяжеленный 0,7-12,0; металлизированная фракция вакуумной ректификации прямогонного мазута 0,5-8,0; фракция каталитического газойля с температурой кипения 190-550°С 0,1-3,0 разбавитель: фракция ректификации прямогонного мазута с температурой кипения 360-390°С 0,1-6,0 и прямогонное дизельное топливо фракции 160-360°С 0,1-1,8; комбинированный продукт висбрекинга - остальное до 100,0.

Способ получения котельного топлива, включающий вакуумную ректификацию прямогонного мазута, с получением утяжеленного гудрона и металлизированной фракции вакуумной ректификации, фракции вакуумного газойля с последующим висбрекингом утяжеленного гудрона с получением комбинированного продукта висбрекинга, при этом для получения котельного топлива смешивают гудрон утяжеленный, металлизированную фракцию вакуумной ректификации мазутов, смесь асфальта и экстракта производства масел, разбавитель - прямогонное дизельное топливо фракции 160-360°С, комбинированный продукт висбрекинга, характеризующийся тем, что в процессе вакуумной ректификации смесевого сырья дополнительно выделяют фракцию с температурой кипения 360-390°С и используют ее в качестве дополнительного компонента разбавителя котельного топлива, в котельное топливо дополнительно вводят фракцию каталитического газойля с температурой кипения 190-550°С, при следующем соотношении компонентов смешения в котельном топливе, мас.

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности и может быть использовано, в частности, для повышения глубины переработки тяжелого нефтяного сырья.

Изобретение относится к способу получения разветвленных алканов и разветвленных алкенов в составе топлива или растворителя в результате пиролиза радикальных предшественников.

Изобретение относится к области нефтепереработки, а именно к переработке тяжелых нефтяных остатков в процессе инициированного термокрекинга, и может быть использовано для получения дополнительного количества топлив дистиллятных фракций (с температурой кипения до 360°С).

Изобретение относится к термическому крекингу углеводородных смесей, таких как неотбензиненные сырые нефти или другие углеводородные смеси, для получения олефинов.

Изобретение относится к способу подготовки высоковязкой нефти для ее транспортировки по трубопроводу. Способ включает смешение высоковязкой нефти с добавкой, последующий термокрекинг полученной смеси и разделение продуктов термокрекинга на газопаровую и жидкую фазы.

Изобретение относится к области фильтрования нефтяного газа и удаления пыли во время пиролиза (коксования) угля, а также к высокотемпературному устройству и системе для удаления и фильтрования пыли и способу непрерывного удаления и фильтрования пыли для угольного газа.

Изобретение может быть использовано для извлечения гелия из природного газа или продувочных газов производственных процессов. Для получения гелия из технологического газа подают технологический газ под давлением менее 15 бар в блок предварительной очистки, где удаляют нежелательные компоненты.

Изобретение относится к области нефтехимии, а именно к способам получения этилена пиролизом углеводородного сырья, в частности, в стадии подготовки продуктов пиролиза к дальнейшей переработке. Способ очистки пирогаза осуществляется прямым контактом с циркуляционным закалочным маслом в колонке первичной ректификации, при этом в циркуляционную систему закалочного масла добавляют бутил-бензольную фракцию в количестве 0,2-0,3 мас. от сырья пиролиза. Технический результат – улучшение показателей процесса очистки пирогаза снижение процесса укрупнениях частиц кокса и сажи за счет растворения слюдистых соединений в закалочном масле, снижение образования отложений в аппаратах и трубопроводах и, соответственно, сокращение потребления свежего закалочного масла, а также его потерь с использованием отходов производства. 1 з.п. ф-лы., 1 ил., 2 табл., 2 пр.

Наверх