Способ ионного азотирования в скрещенных электрических и магнитных полях

Изобретение относится к области химико-термической обработки, а именно к вакуумному ионно-плазменному азотированию, и может быть использовано в машиностроении для повышения надежности и долговечности широкого ассортимента деталей машин и инструментов, изготовленных из стали. Способ ионного азотирования стального изделия в тлеющем разряде включает подачу в камеру для азотирования рабочей газовой смеси, нагрев стального изделия до температуры азотирования 500-540°С с выдержкой в течение 4-6 часов и одновременное генерирование в камере для азотирования скрещенных электрического и магнитного полей. Указанный нагрев стального изделия осуществляют посредством плазмы азота повышенной плотности, которую формируют в тороидальной области вращения электронов с помощью скрещенных электрического и магнитного полей, при этом регулированием силы тока и магнитной индукции электромагнитной системы изменяют конфигурацию скрещенных электрического и магнитного полей с обеспечением нахождения обрабатываемого изделия полностью в области указанных полей. Оновременное генерирование в камере для азотирования скрещенных электрического и магнитного полей осуществляют посредством электромагнитной системы, над которой располагают обрабатываемые изделия. Обеспечивается увеличение скорости обработки изделий различных форм и размеров ионным азотированием. 1 ил., 1 пр.

 

Изобретение относится к области химико-термической обработки, а именно к вакуумному ионно-плазменному азотированию, и может быть использовано в машиностроении для повышения надежности и долговечности широкого ассортимента деталей машин и инструментов, изготовленных из стали, а также позволяет интенсифицировать процесс азотирования.

Известен способ и устройство для ускоренного азотирования деталей машин с использованием импульсов электромагнитного поля (патент РФ №2532779, кл. С23С 8/36, С23С 14/06, 10.11.2014), включающий подачу в камеру для азотирования реакционного газа, его нагрев с одновременным генерированием в камере переменного электромагнитного поля, осуществляемый посредством соленоида, внутри которого располагают обрабатываемую деталь с направлением вектора магнитной индукции перпендикулярно обрабатываемой поверхности детали и изменением в процессе азотирования его величины с формированием прямоугольных импульсов, длительность и периодичность которых обеспечивают ускорение движения и внедрения ионов азота в обрабатываемую поверхность за счет вертикального фронта нарастания напряженности магнитного поля. Данный способ реализуется устройством для генерирования электромагнитного поля, выполненного в виде расположенного вокруг камеры соленоида, обеспечивающего генерирование импульсного электромагнитного поля с прямоугольными импульсами, с направлением вектора магнитной индукции перпендикулярной обрабатываемой поверхности, находящейся внутри него детали.

Недостатком аналога является малые габариты камеры, в которой осуществляется азотирование, а также отсутствие возможности изменения конфигурации магнитного поля во время процесса азотирования.

Известен способ локального ионного азотирования стальных изделий в тлеющем разряде с магнитным полем (патент РФ №2654161, кл. С23С 8/38, 16.05.2018), включающий проведение вакуумного нагрева участка стального изделия, подверженного интенсивному износу в плазме азота повышенной плотности, при этом упомянутый участок стального изделия помещают в центр кольцевой магнитной системы, установленной на катоде, в которой формируют плазму азота повышенной плотности, и осуществляют вакуумный нагрев с формированием на нем нитридного слоя.

Недостатком аналога являются ограниченные функциональные возможности, обусловленные отсутствием регулирования конфигурации магнитного поля во время процесса азотирования.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ вакуумного ионно-плазменного азотирования изделий из стали (патент РФ №2418095, кл. С23С 8/36, С23С 14/06, 10.05.2011), включающий проведение вакуумного нагрева изделий в плазме азота повышенной плотности, которую создают в тороидальной области движения электронов, образованной скрещенными электрическими и магнитными полями, при этом под действием магнитного поля, создаваемого двумя цилиндрическими магнитами, один из которых полый, электроны движутся по циклоидным замкнутым траекториям.

Недостатками прототипа являются ограниченные функциональные возможности, обусловленные отсутствием регулирования конфигурации магнитного поля во время процесса азотирования.

Задачей, на решение которой направлено предлагаемое изобретение, является расширение функциональных возможностей ионного азотирования за счет обработки изделий различных форм и размеров в скрещенных электрических и магнитных полях и интенсификация процесса.

Технический результат - увеличение скорости обработки изделий ионным азотированием, обработка изделий различных форм и размеров.

Данная задача решается за счет того, что заявленный способ включает подачу в камеру для азотирования рабочую газовую смесь, нагрев стального изделия до температуры азотирования 500-540°С, с выдержкой в течение 4-6 часов и одновременное генерирование в камере для азотирования скрещенных электрического и магнитного полей. В отличие от прототипа, в заявляемом изобретении указанный нагрев стального изделия осуществляют посредством плазмы азота повышенной плотности, которую формируют в тороидальной области вращения электронов с помощью скрещенных электрического и магнитного полей, при этом регулированием силы тока и магнитной индукции электромагнитной системы изменяют конфигурацию скрещенных электрического и магнитного полей с обеспечением нахождения обрабатываемого изделия полностью в области указанных полей, а одновременное генерирование в камере для азотирования скрещенных электрического и магнитного полей осуществляют посредством электромагнитной системы, над которой располагают обрабатываемые изделия.

Существо изобретения поясняется чертежом.

На чертеже изображена схема реализации способа ионного азотирования в скрещенных электрических и магнитных полях. Схема содержит источники питания 1 и 2, камера 3, электромагнитная система 4, анод 5, подложка - катод 6, изоляторы 7 и обрабатываемые изделия из стали 8.

Пример конкретной реализации способа.

В вакуумной камере устанавливают обрабатываемые изделия из стали на подложку 6, установленную над электромагнитной системой 4. Затем в камере создают рабочее давление (Рраб.=50 Па), необходимое для зажигания тлеющего разряда. В камеру подают смесь газов из аргона, азота и водорода (50% Аr, 35% N2, 15% Н2). Далее создают скрещенные электрические и магнитные поля путем подачи напряжения источником питания 2 на электромагнитную систему. Во время процесса ионного азотирования, на источнике питания 2 регулируют силу тока и магнитную индукцию, влияющую на конфигурацию скрещенных электрических и магнитных полей. Силу тока и магнитную индукцию устанавливают таким образом, чтобы обрабатываемое изделие полностью находилось в области скрещенных электрических и магнитных полях. За счет плазмы азота повышенной плотности, которую формируют в тороидальной области вращения электронов при помощи скрещенных электрических и магнитных полей, происходит нагрев изделия до температур 500-540°С, при этом азотирование происходит в течение 4-6 часов.

Заявленный способ имеет следующие преимущества: возможность регулирования конфигурацией скрещенных электрических и магнитных полей под изделия различных форм и размеров, интенсификация процесса азотирования за счет плазмы азота повышенной плотности, высокая технологичность процесса, экологическая чистота процесса за счет отсутствия вредных производственных выбросов в атмосферу, простота схемы обработки и сравнительно невысокая стоимость оборудования.

Способ ионного азотирования стального изделия в тлеющем разряде, включающий подачу в камеру для азотирования рабочей газовой смеси, нагрев стального изделия до температуры азотирования 500-540°С с выдержкой в течение 4-6 часов и одновременное генерирование в камере для азотирования скрещенных электрического и магнитного полей, отличающийся тем, что указанный нагрев стального изделия осуществляют посредством плазмы азота повышенной плотности, которую формируют в тороидальной области вращения электронов с помощью скрещенных электрического и магнитного полей, при этом регулированием силы тока и магнитной индукции электромагнитной системы изменяют конфигурацию скрещенных электрического и магнитного полей с обеспечением нахождения обрабатываемого изделия полностью в области указанных полей, а одновременное генерирование в камере для азотирования скрещенных электрического и магнитного полей осуществляют посредством электромагнитной системы, над которой располагают обрабатываемые изделия.



 

Похожие патенты:

Изобретение относится к области технологии машиностроения, а именно к зубчатым передачам, и предназначено для обеспечения высокой износостойкости зубчатого зацепления, позволяет повысить долговечность зубчатых передач.

Изобретение относится к ионно-плазменной технологии и может быть использовано для упрочнения режущего инструмента. Способ комбинированного упрочнения режущего инструмента включает заполнение газовой плазмой рабочей вакуумной камеры с установленным внутри нее режущим инструментом, нагрев и выдержку режущего инструмента в азотной плазме и синтез на его поверхности из плазмы износостойкого покрытия.

Изобретение относится к изготовлению закаленных под прессом деталей из стальных листов или стальных лент с покрытием на основе алюминия. Предложен способ, в котором на стальной лист или стальную ленту наносят основной слой покрытия на основе алюминия методом горячего погружения, после которого до процесса формования стальной лист или стальную ленту с основным слоем покрытия подвергают плазменному оксидированию и/или обработке горячей водой, и/или обработке водяным паром, и на поверхности основного слоя покрытия путем образования оксидов или гидроксидов образуют поверхностный слой, содержащий оксид и/или гидроксид алюминия.

Изобретение относится к способу упрочнения твердого сплава и может найти применение в машиностроении при изготовлении изделий порошковой металлургии из твердых сплавов, применяемом для холодной и горячей механической обработки металлов и сплавов, например, резанием.

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, работающих в условия износа, в медицине и других отраслях промышленности.

Изобретение относится к способу и устройству для термохимического упрочнения деталей. Упомянутый способ включает по меньшей мере одну стадию науглероживания в углеродсодержащей газовой атмосфере с давлением менее 50 мбар, причем детали выдерживают при температуре от 900 до 1050°С, и по меньшей мере одну стадию азотирования в азотсодержащей газовой атмосфере с давлением менее 50 мбар, причем детали выдерживают при температурах от 800 до 1050°С, азотсодержащая газовая атмосфера содержит молекулярный азот (N2) в качестве донорного газа и возбуждается посредством разрядной плазмы.

Изобретение относится к упрочнению поверхности изделий из титана и титановых сплавов путем ионно-плазменного азотирования и может быть использовано в авиакосмической отрасли, машиностроении, медицине и других отраслях.

Изобретение относится к области металлургии, в частности к плазменной химико-термической обработке титановых сплавов, и может быть использовано в машиностроении для повышения износостойкости и коррозионной стойкости деталей машин.

Изобретение относится к химико-термической обработке и может быть использовано в машиностроении и других областях промышленности. Способ обработки поверхности стального изделия включает проведение интенсивной поверхностной пластической деформации и ионное азотирование.

Изобретение относится к нанесению покрытия на поверхность стального изделия, применяемого для защиты от эрозионного износа рабочих лопаток влажнопаровых ступеней турбин, эксплуатирующихся в экстремальных условиях.

Изобретение относится к области энергетического машиностроения и может быть использовано для защиты от эрозионного износа стальных рабочих лопаток влажнопаровых ступеней турбин, подвергающихся высокоскоростному каплеударному воздействию в коррозионно-активных средах при повышенных усталостных нагрузках.

Изобретение относится к технологии создания двумерных магнитных материалов для сверхкомпактных спинтронных устройств. Способ получения дисилицида гадолиния GdSi2 со структурой интеркалированных слоев силицена методом молекулярно-лучевой эпитаксии заключается в осаждении атомарного потока гадолиния с давлением PGd (от 0,1 до менее 1)⋅10-8 Торр или PGd (от более 1 до 10)⋅10-8 Торр на предварительно очищенную поверхность подложки Si(111), нагретую до Ts=350 ÷ менее 400°С или Ts=более 400 ÷ 450°С, до формирования пленки дисилицида гадолиния толщиной не более 7 нм.

Изобретение относится к технологии создания двумерных магнитных материалов для сверхкомпактных спинтронных устройств. Способ получения дисилицида гадолиния GdSi2 со структурой интеркалированных слоев силицена методом молекулярно-лучевой эпитаксии заключается в осаждении атомарного потока гадолиния с давлением PGd (от 0,1 до менее 1)⋅10-8 Торр или PGd (от более 1 до 10)⋅10-8 Торр на предварительно очищенную поверхность подложки Si(111), нагретую до Ts=350 ÷ менее 400°С или Ts=более 400 ÷ 450°С, до формирования пленки дисилицида гадолиния толщиной не более 7 нм.

Настоящее изобретение относится к режущему инструменту с покрытием. Режущий инструмент с покрытием содержит корпус из твердого сплава и покрытие, нанесенное осаждением из газовой фазы (PVD).

Изобретение относится к химическому нанесению покрытия осаждением соединения с использованием электрических разрядов и плазменных струй, и может быть использовано в двигателестроении, авиастроении и машиностроении.

Изобретение относится к области металлургии, а именно к химическому нанесению покрытия осаждением соединения с использованием электрических разрядов и плазменных струй, и может быть использовано в двигателестроении, авиастроении и машиностроении.

Изобретение относится к способу формирования на поверхности изделия из алюминиевого сплава износостойкого слоя и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин из алюминиевых сплавов.
Изобретение относится к способу формирования нанокристаллического поверхностного слоя на детали из сплава на никелевой основе(варианты) и может быть использовано для обработки лопаток газотурбинных двигателей и установок для улучшения их эксплуатационных характеристик.
Изобретение относится к способу упрочняющей обработки детали из сплава на основе никеля. Технический результат состоит в повышении выносливости и циклической долговечности детали.

Изобретение относится к области получения износо-, ударо-, тепло-, трещино- и коррозионностойких покрытий и может быть использовано в машиностроении для повышения надежности и долговечности широкого ассортимента деталей машин и инструмента.

Изобретение относится к области химико-термической обработки, а именно к вакуумному ионно-плазменному азотированию, и может быть использовано в машиностроении для повышения надежности и долговечности широкого ассортимента деталей машин и инструментов, изготовленных из стали. Способ ионного азотирования стального изделия в тлеющем разряде включает подачу в камеру для азотирования рабочей газовой смеси, нагрев стального изделия до температуры азотирования 500-540°С с выдержкой в течение 4-6 часов и одновременное генерирование в камере для азотирования скрещенных электрического и магнитного полей. Указанный нагрев стального изделия осуществляют посредством плазмы азота повышенной плотности, которую формируют в тороидальной области вращения электронов с помощью скрещенных электрического и магнитного полей, при этом регулированием силы тока и магнитной индукции электромагнитной системы изменяют конфигурацию скрещенных электрического и магнитного полей с обеспечением нахождения обрабатываемого изделия полностью в области указанных полей. Оновременное генерирование в камере для азотирования скрещенных электрического и магнитного полей осуществляют посредством электромагнитной системы, над которой располагают обрабатываемые изделия. Обеспечивается увеличение скорости обработки изделий различных форм и размеров ионным азотированием. 1 ил., 1 пр.

Наверх