Способ извлечения алмазов из матрицы инструмента

Изобретение относится к технологии извлечения алмазов из алмазоносной матрицы инструмента. Способ включает растворение металла-связки электролитом с образованием шлама, содержащего частицы алмазов, отделение электролита от шлама и выделение алмазов, при этом растворение металла-связки осуществляют в растворе серной кислоты концентрацией 100-300 г/л с активирующими добавками: азотной кислотой или нитратом аммония, а выделение и классификацию алмазов осуществляют в восходящем потоке с переменным гидродинамическим режимом при линейной скорости в пределах 15-45 м/ч. Концентрацию азотной кислоты или нитрата аммония варьируют в пределах 20-50 г/л, а процесс растворения ведут при температуре 60-80°С. Технический результат состоит в расширении технических возможностей в выборе конструкционных материалов и исключении потерь алмазов и ценных компонентов матрицы. 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

 

Изобретение относится к способам извлечения алмазов из алмазосодержащих материалов, которыми могут быть продукты синтеза алмазов, отходы переработки продуктов синтеза, и может быть использовано на предприятиях, производящих синтетические алмазы или специализирующиеся по переработке продуктов синтеза алмазов.

Известен способ извлечения алмазов из алмазосодержащего материала, включающий растворение металлов концентрированными кислотами (в частности соляной кислотой) с последующим окислением графита в присутствии азотисто-кислого аммония и оксидов металлов свинца, марганца и цинка и обработкой продукта соляной кислотой.[: Патент США N 4578260, C01B 31/06, 1986.]

Недостатком способа является использование концентрированных кислот и токсичных окислителей и как следствие этого необходимость очистки сточных вод, вредные условия труда, загрязнение окружающей среды, потери алмазов из-за необходимости большого количества промывок после кислотной обработки.

Более совершенным признают способ [Пат РФ №2043299, C01B 31/06, заяв., 501486/26, 30.10.1991, опубл. 10.09.1995] извлечения алмазов из алмазосодержащего материала, включающий удаление металлов и отделение графита от алмаза, отличающийся тем, что полученный после удаления металлов продукт обжигают при 300-700°С в течение 10-300 мин, а отделяют графит от алмаза флотацией. Способ трудоемок, требует значительных энергетических затрат и не исключает использование концентрированных кислот на начальных стадиях удаления металлов.

Наиболее близким признан способ извлечения алмазов и твердосплавных компонентов из алмазоносной матрицы инструмента [Пат РФ №2062252, C01B 31/06 заяв., 89 4771371 18.12.1989 конвенц. приор 18.12.1989], включающий дезинтеграцию матрицы электролитическим растворением металла-связки с образованием шлама из частиц алмазов и твердосплавных компонентов, отделение электролита от шлама, высушивание шлама и выделение алмазов и твердосплавных компонентов, отличающийся тем, что, с целью повышения выхода извлеченных алмазов и улучшения их качества, после отделения электролита перед высушиванием дополнительно проводят дезинтеграцию шлама и очищение зерен алмазов путем обработки в водном растворе соляной кислоты и затем в водном растворе щелочи и после высушивания и выделения алмазов и твердосплавных компонентов выделенные алмазы измельчают электрогидравлическим дроблением, выделяют кондиционные по форме алмазы, остальные овализуют до уровня кондиции по форме и из тех и других выделяют кондиционные по прочности алмазы. При этом оставшиеся некондиционные по прочности алмазы разделяют на две партии по крупности зерен до 1 мм и более 1 мм и обрабатывают электрогидравлическим дроблением и объемным сжатием соответственно с последующим выделением кондиционных по форме алмазов.

Последний из приведенных так же не лишен недостатков, главными из которых являются: ограничения выбора конструкционных материалов при использовании соляной кислоты, неизбежные потери части кондиционных зерен в режиме электрогидравлического дробления на стадии финишной обработки.

Решаемой проблемой заявляемого изобретения является расширение технических возможностей в выборе конструкционных материалов, исключение потерь алмазов и ценных компонентов матрицы.

Сущность заявляемого технического решения заключается в том, что извлечение алмазов из алмазоносной матрицы инструмента, включающем растворение металла-связки электролитом с образованием шлама, содержащего частицы алмазов, отделение электролита от шлама и выделение алмазов, отличающийся тем, что растворение металла-связки осуществляют в растворе серной кислоты концентрацией 100-300 г/л с активирующими добавками: азотной кислотой или нитратом аммония, а выделение и классификацию алмазов осуществляют в восходящем потоке с переменным гидродинамическим режимом при линейной скорости в пределах 15-45 м/ч.

При этом концентрацию азотной кислоты или нитрата аммония варьируют в пределах 20-50 г/л, а процесс растворения ведут при температуре 60-80°С.

Достигаемые результаты заявляемого способа основаны в первую очередь на том, что матричная основа алмазного инструмента как правило содержит в своем составе медь, кобальт, никель в самых разнообразных пропорциях и элементы припоя: свинец, олово. Экспериментально установлено, что удаление металлов может быть достигнуто их переводом в раствор серной кислотой относительно невысокой концентрации в присутствии активаторов процесса растворения в виде нитратов. Элементы припоев при этом, в частности свинец образуют малорастворимые сульфаты. Шлам после отделения раствора представляет собой многофазную систему алмазов в первозданном их виде с тонкодисперсными сульфатами элементов припоя и графита. Использование восходящего потока с переменным гидродинамическим режимом позволяет одновременно промыть алмазы от кислого раствора, отделить сульфатно-графитовую составляющую и, при необходимости, расклассифицировать алмазы по крупности и совершенству формы.

Сущность способа поясняется примерами.

Пример 1. Алмазы извлекали из партии отработанных буровых колонок, алмазоносный слой которых содержал следующие компоненты в весовых процентах: алмазы в виде зерен крупностью от 400 до 800 мкм- 8, металл-основа (сплав меди, никеля, кобальта) - 62, припой и примеси остальное. Растворение основы проводили погружением образцов под слой раствора серной кислоты концентрации 100-300 г/л. Скорость растворения регулировали вводом нитрат иона в виде азотной кислоты. Температура процесса поддерживалась 60-80°С. После дезинтеграции основы образцов за счет растворения раствор декантировали, а шламовый остаток использовали в качестве исходного питания лабораторной пульсационной колонны, схема которой представлена на Фиг. 1, где 1 - колонна пульсационная с пакетной насадкой типа КРИМЗ, 2 - отстойник конический, 3 - насос циркуляционный, 4 - пульсатор мембранный.

Пример 2 Отличие от процедуры, описанной в примере 1, скорость растворения регулировали вводом нитрат иона в виде нитрата аммония. Преимущество этого режима состоит в том, что газообразные продукты реакции представлены не окислами азота, а преимущественно молекулярным азотом. Исключается вредное воздействие на персонал и затраты на обеспечение безопасных условий.

Пример 3. Шламовый остаток от растворения основы содержащий алмазы, полученный по процедурам, описанным в примере 1, 2, использовали в качестве исходного питания пульсационной колонны. Результаты фракционирования шлама при различных линейных скоростях восходящего потока представлены в таблице. На фиг. 2 представлен снимок алмазов, полученных при линейной скорости восходящего потока, равной 45 м/ч.

Таблица.

Результаты фракционирования шламового остатка от растворения основы.

№опыта Линейная скорость, м/ч Наличие включений в алмазах, % масс. оценочно Наличие алмазов в шламе, % масс. оценочно
1 13 5 -
2 15 1 1
3 44 - 2
4 51 - 4

Таким образом, реализация заявленных режимов в техническом решении: концентрационные пределы используемой серной кислоты - обеспечивает щадящие коррозионные условия ведения процесса, облегчает выбор конструкционных материалов и утилизацию растворов основы; использование восходящего потока с переменным гидродинамическим режимом в варианте пульсационной колонны - значимо сокращает и упрощает технологическую схему и исключает потери алмазов в сравнении с известными ранее техническими решениями.

1. Способ извлечения алмазов из алмазоносной матрицы инструмента, включающий растворение металла-связки с образованием шлама, содержащего частицы алмазов, отделение электролита от шлама и выделение алмазов, отличающийся тем, что растворение металла-связки осуществляют в растворе серной кислоты концентрацией 100-300 г/л с активирующими добавками: азотной кислотой или нитратом аммония, а выделение и классификацию алмазов осуществляют в восходящем потоке с переменным гидродинамическим режимом при линейной скорости в пределах 15-45 м/ч.

2. Способ по п.1, отличающийся тем, что концентрацию азотной кислоты или нитрата аммония варьируют в пределах 20-50 г/л, а процесс растворения ведут при температуре 60-80°С.



 

Похожие патенты:

Изобретение относится к технологии получения полупроводниковых материалов, а именно к получению пластин монокристалла широкозонного нитрида галлия (GaN) с гексагональной кристаллической решеткой.

Изобретение относится к области технологических процессов, связанных с получением нового магнитного материала с магнитным состоянием типа спинового стекла, и может найти применение при разработке моделей новых типов устройств современной электроники.

Изобретение относится к области получения наноматериалов, а именно нанопорошков кремния, и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток.

Изобретение относится к материаловедению и может быть использовано при изготовлении полупроводниковых приборов. Состав полирующего травителя включает следующие компоненты: 7 объемных долей серной кислоты (98%), 1 объемную долю перекиси водорода (30%), 1 объемную долю воды, 3,5 объемных долей этиленгликоля.

Изобретение относится к области химии, в частности к методикам наноструктурирования и модификации свойств поверхности. Изобретение может быть использовано для изменения смачиваемости поверхности кремния путем изменения пористости поверхности, в том числе для получения гидрофильных или гидрофобных поверхностей на основе кристаллического кремния.
Изобретение относится к способам обработки массивных (диаметром до 200 мм) оптических элементов из селенида цинка, используемых в качестве пассивных оптических элементов высокомощных СО 2-лазеров и других приборов, работающих в ИК-диапазоне длин волн.

Изобретение относится к микроэлектронике, в частности к способам приготовления атомно-гладких поверхностей полупроводников. .
Изобретение относится к области изготовления оптических элементов и может быть использовано в инфракрасной технике. .
Изобретение относится к способу гидротермального травления, обеспечивающего возможность создания экологически чистой методики травления монокристаллов танталата лития, используемых в электронной технике.
Изобретение относится к способу гидротермального травления, обеспечивающему возможность создания экологически чистой методики травления монокристаллов метаниобата лития, используемых в электронной технике.

Изобретение может быть использовано при получении подложки для катализаторов, используемых в процессе каталитического риформинга. Сфероидальные частицы оксида алюминия имеют удельную поверхность по БЭТ, составляющую 150-300 м2/г, средний диаметр частиц 1,2-3 мм, разброс диаметров частиц, выраженный через стандартное отклонение, не превышающее 0,1.

Изобретение относится к области электротермии, химической технологии, глубокой переработки каменных энергетических углей и может быть использовано при получении карбида кремния (SiC) для применения в восстановительных процессах при использовании в металлургической промышленности для производства стали.

Изобретение относится к промышленности, строительству, сельскому хозяйству, медицине и может быть использовано при изготовлении катализаторов, активных добавок и присадок.
Изобретение относится к получению активного угля из косточек плодовых деревьев, преимущественно косточек сливы. Способ включает карбонизацию при 600-700°С со скоростью подъема температуры 10-15°С/мин и выдержкой при конечной температуре 20-30 минут, дробление, рассев и активацию частиц.

Изобретение относится к способу и устройству для обработки суспензии, содержащей органические компоненты, например биомассу. Содержание воды в суспензии по меньшей мере 50 %.

Изобретение относится к способу изготовления нанолиста из сульфатного двумерного карбида титана, включающему следующие этапы: (1) получение осадка двумерного карбида титана посредством использования атомных слоев алюминия во фтороводородной кислоте для химической обдирки атомов слоистого карбида титана-алюминия; (2) повторная дисперсия осадка двумерного карбида титана, полученного на этапе (1), в воде с получением суспензии двумерного карбида титана; (3) растворение сульфаниловой кислоты и азотнокислого натрия в растворе фтороводородной кислоты для получения реакции в условиях ванны со льдом с получением раствора соли диазосоединения сульфаниловой кислоты; (4) добавление раствора соли диазосоединения сульфаниловой кислоты, полученного на этапе (3), в жидкую суспензию двумерного карбида титана, полученную на этапе (2), с получением реакции в течение определенного времени посредством магнитного перемешивания в условиях ванны со льдом для получения реакции сульфирования двумерного карбида титана с солью диазосоединения сульфаниловой кислоты с получением раствора сульфированного двумерного карбида титана; и (5) центрифугирование и осаждение раствора сульфированного двумерного карбида титана, полученного на этапе (4), с последующей промывкой раствора деионизированной водой до получения уровня рН от 5 до 6; фильтрация раствора с помощью микропористого фильтра и повторная дисперсия в воде с получением дисперсионной жидкости с двумерным карбидом титана; проведение ультразвуковой обработки упомянутой дисперсионной жидкости с получением одно- или многослойной дисперсионной жидкости с сульфированным двумерным карбидом титана с последующей сублимацией этой дисперсионной жидкости для получения порошка сульфированного двумерного карбида титана.

Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования и представляющих собой продукты селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол, которые применяют в качестве жидких органических носителей водорода (ЖОНВ).

Изобретение относится к вычислительной технике. Технический результат заключается в повышении отношения величин токов в открытом и закрытом состояниях (Ion/Ioff) с достижением 4-6 порядков.

Изобретение может быть использовано в адсорбционной технике для аккумулирования газов, а также в материаловедении и электронике. Сначала производят насыщение материнского объема углеродных нанотрубок молекулами-координаторами: углеводородами нормального, ароматического, нафтенового, ацетиленового или олефинового ряда в жидком виде при температурах ниже температуры кипения соответствующего углеводорода, в количестве 40-230 мас.

Изобретение относится к области выращивания слоев нанокристаллического гексагонального карбида кремния (муассанита) и может быть использовано в электронной промышленности.

Изобретение относится к получению соединений с углеродом и может быть использовано в водородной энергетике. Устройство для получения порошка, содержащего карбид молибдена, содержит камеру 1 из диэлектрического материала с крышкой 2 вверху, внутри которой горизонтально и соосно размещены цилиндрические графитовые анод 9 и катод 5. На дне камеры 1 вертикально закреплены два металлических держателя 3, 4. В держателе 3 сбоку, со стороны, обращенной к центру камеры 1, выполнена выемка, в которую горизонтально вставлена закрытая торцевая часть цилиндрического полого катода 5, открытая часть которого обращена к аноду 9. Полость катода 5 предназначена для размещения цилиндрической прессовки 11 из порошка графита и молибдена до соприкосновения её круглой плоской поверхности с соответствующей поверхностью полости катода 5. В держателе 4 горизонтально выполнено сквозное отверстие с резьбой, в которое вставлен винт 6, конец которого прикреплен к середине дна металлического стакана 8, в который вставлен сплошной анод 9. Анод 9 закреплен с возможностью перемещения вдоль продольной оси при помощи винта 6, один конец которого выведен из камеры 1 и снабжен рукоятью 7. Диаметр полости катода 5 больше диаметра анода 9 от 2 до 4 раз, а глубина полости катода не меньше её диаметра. Стакан 8, в который вставлен анод 9, и держатель 3 катода 5 соединены с источником постоянного тока 10, расположенным снаружи камеры 1. Для работы устройства не требуются операции по формированию защитной газовой разряженной атмосферы, так как анод и катод расположены в камере, сообщающейся с открытым воздухом, а защитная атмосфера СО генерируется самопроизвольно непосредственно в процессе горения дугового разряда в полости графитового катода. Производительность не ограничивается скоростью расхода анода, так как прессовка из смеси графита и молибдена закладывается в полость цилиндрического графитового катода. В результате в  плазме дугового разряда постоянного тока, инициированного в воздушной атмосфере при нормальных условиях, получают порошок, содержащий карбид молибдена гексагональной и орторомбической структуры. 2 ил.

Изобретение относится к технологии извлечения алмазов из алмазоносной матрицы инструмента. Способ включает растворение металла-связки электролитом с образованием шлама, содержащего частицы алмазов, отделение электролита от шлама и выделение алмазов, при этом растворение металла-связки осуществляют в растворе серной кислоты концентрацией 100-300 гл с активирующими добавками: азотной кислотой или нитратом аммония, а выделение и классификацию алмазов осуществляют в восходящем потоке с переменным гидродинамическим режимом при линейной скорости в пределах 15-45 мч. Концентрацию азотной кислоты или нитрата аммония варьируют в пределах 20-50 гл, а процесс растворения ведут при температуре 60-80°С. Технический результат состоит в расширении технических возможностей в выборе конструкционных материалов и исключении потерь алмазов и ценных компонентов матрицы. 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Наверх