Способ изготовления неорганических хлорсодержащих перовскитных тонких пленок


C01P2002/34 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2719167:

федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО) (RU)

Изобретение относится к области синтеза неорганических материалов, в частности к получению перовскитных тонких пленок, которые могут применяться в качестве активного слоя для светодиодов и солнечных элементов. Способ изготовления неорганических хлорсодержащих перовскитных тонких пленок методом химического анионного обмена в паровой фазе заключается в том, что предварительно полученный образец перовскитной тонкой пленки состава CsPbBr3, нанесенной на подложку, помещают рядом со второй чистой подложкой в сосуд с плоским дном, нагревают до 120°С в течение не менее 3 мин. Затем на чистую подложку наносят соляную кислоту (HCl, 40%) и обе подожки накрывают нагретой до 120°С крышкой, поперечный размер которой меньше поперечного размера сосуда с плоским дном, при этом количество нанесенной кислоты и размер крышки подбирается в примерном объемном соотношении 1:2500, а время протекании реакции анионного обмена выбирают в зависимости от требуемого соотношения брома и хлора в изготовляемой пленке состава CsPbBr3-xClx (0≤x≤3) с учетом того, что время полного замещения галогенов Br на Cl не превышает 3 мин, после чего полученный образец нагревают, поднимая температуру от 120°С до 200°С в течение 2 мин. Технический результат состоит в возможности проведения процедуры в замкнутой среде, которая делает процесс безопасным, в получении любых соотношений галогенов за короткий период времени и сохранении высококачественной морфологии перовскитных пленок. 1 з.п. ф-лы, 1 ил., 1 пр.

 

Изобретение относится к области синтеза неорганических материалов, в частности, получению перовскитных тонких пленок, которые могут применяться в качестве активного слоя для светодиодов и солнечных элементов.

Известен способ анионного обмена в газовой среде с целью получения нановискеров с отличным от исходного видом галогена (Не X. et al. Multicolor perovskite nanowire lasers through kinetically controlled solution growth followed by gas-phase halide exchange // Journal of Materials Chemistry C. - 2017. - T. 5. - №. 48. - C. 12707-12713.). В данной работе нановискеры состава CH3NH3PbCl3, нанесенные на стеклянную подложку, подвергают воздействию паров HI (60°С, 12 ч) или HBr (60°C, 6 ч), что приводит к трансформации нановискеров исходного состава в нановискеры состава CH3NH3PbI3 или CH3NH3PbBr3 соответственно. Для этого подложки с нанесенными нановискерами помещают в один мерный стакан, а необходимую кислоту (30 мкл) капают в другой мерный стакан. Оба стакана помещают в резервуар, заполненный безводным CaCl2, и закрывают герметизирующей пленкой. При проверке обратного преобразования нановискеров состава CH3NH3PbBr3 в CH3NH3PbCl3 в парах HCl при 60°С в течение 12 часов предложенный способ не работает (цвет и морфология нановискеров осталась неизменной). Основными недостатками данного способа является длительность процесса, составляющая 6 и 12 часов, а также необратимость процесса.

Известен способ получения неорганических тонких пленок методом анионного обмена (Заявка на патент CN №107564978 В, МПК Y02E 10/50, Y02P 70/521 опубликовано 12.02.2019). В работе представлен метод анионного обмена для пленок состава CsPbI3 с целью получения пленок состава CsPbBr3, который происходит путем химического осаждения из паровой фазы Br2. Для этого полученные образцы пленок состава CsPbI3 помещают в кварцевую трубку, которая расположена в трубчатой печи. После прокачки кварцевой трубки инертным газом, трубчатую печь нагревают до 150°С. Затем 200 мл паров Br2 извлекают с помощью шприца из конической колбы, заполненного бромной водой (концентрация Br2 -3%), и впрыскивают в горячую трубку. Реакция анионного обмена происходит в течение 30 мин при 150°С. Признаком полного проведения реакции являлся желтый цвет пленок CsPbBr3, характерные пики на спектрах рентгеноструктурного анализа (XRD) и спектрах поглощения. Недостатками данного метода являются: длительное время проведения реакции (30 мин), сложность конструкции и необходимость осуществления реакции в инертной атмосфере.

Известен способ изготовления неорганических хлорсодержащих перовскитных тонких пленок путем анионного обмена в паровой фазе (Palazon F. et al. X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water // ACS nano. - 2016. - T. 10. - №. 1. - C. 1224-1230) выбранный в качестве способа-прототипа, в котором пленки неорганического перовскита типа CsPbX3, нанесенные на кремниевую подложку, держат над открытой виалой, содержащей HCl (57%) или HBr (48%) в течение 30 с. Недостатком такого способа является осуществление способа в открытом пространстве и отсутствие защиты от токсичных кислот.

Решается задача возможности осуществления способа химического анионного обмена для перовскитных пленок состава CsPbBr3 в CsPbBrxCl3-x (0≤х≤3) с сохранением высококачественной морфологии и повышения безопасности проведения этого способа.

Поставленная задача решается достижением технического результата, заключающегося в создании замкнутой среды, что делает процесс проведения процедуры безопасным.

Данный технический результат достигается тем, что в способе изготовления неорганических хлорсодержащих перовскитных тонких пленок путем анионного обмена в паровой фазе, заключающийся в помещении предварительно полученного образца перовскитной тонкой пленки состава CsPbBr3, нанесенной на подложку, в среду паров соляной кислоты новым является то, что предварительно полученный образец перовскитной тонкой пленки, нанесенный на подложку, помещают рядом со второй чистой подложкой в сосуд с плоским дном, все это нагревают до 120°С в течение не менее 3 мин, затем на чистую подложку наносят соляную кислоту HCl, и обе подожки накрывают нагретой до 120°С крышкой, поперечный размер которой меньше поперечного размера первого сосуда с плоским дном, при этом количество нанесенной кислоты и размер крышки подбирают в примерном объемном соотношении 1:2500, а время протекания реакции анионного обмена выбирают в зависимости от требуемого соотношения брома и хлора в изготовляемой пленке с учетом того, что время полного замещения галогенов Br на Cl не превышает 3 мин., после чего полученный образец нагревают поднимая температуру от 120°С до 200°С в течение 2 мин. Время протекания реакции анионного обмена для требуемого соотношения брома и хлора в изготовляемой пленке выбирают с учетом соответствия зависимости, аппроксимированной по следующим точкам 3 с - CsPbBr2.61Cl0.39, 8 с - CsPbBr2.102Cl0.898, 13 с - CsPbBr1.501Cl1.499, 25 с - CsPbBr0.966Cl2.034, и 180 с - CsPbBr0.04Cl2.96.

Для осуществления предложенного способа первоначально необходимо получить тонкие пленки CsPbBr3. Для этого бромид цезия CsBr и бромид свинца (II) PbBr2 смешивают в примерном соотношении 1:1,6 в безводном диметилсульфоксиде (ДМСО) в примерном соотношении 1:6. Полученный раствор фильтруют, наносят на предварительно очищенную подложку и центрифугируют в течение 5 мин при 2500 об/мин. Полученный образец постепенно нагревают от 50°С до 150°С для полного испарения ДМСО.

Для проведения метода анионного обмена первую подложку с нанесенной на нее пленкой CsPbBr3, а также вторую чистую подложку помещают на дно сосуда с плоским дном и располагают недалеко друг от друга, и нагревают до 120°С в течение 3 мин. Затем на разогретую вторую чистую подложку наносят соляную кислоту и накрывают вместе с первой подложкой разогретой до 120°С крышкой при этом количество нанесенной кислоты и размер крышки подбирают в примерном объемном соотношении 1:2500. Для достижения нужного соотношения галогенов необходимо, чтобы подложки находились под бюксом в течение определенного фиксированного времени. Результат анионного обмена наблюдают с помощью флуоресцентной микроскопии.

Свойства синтезированных перовскитных тонких пленок показаны на фигуре, где:

на фиг. (а) приведены спектры фотолюминесценции (ФЛ) и поглощения образцов состава CsPbB3 (1), CsPbBr2.61Cl0.39 (2), CsPbBr2.102Cl0.898 (3), CsPbBr1.501Cl1.499 (4), CsPbBr0.966Cl2.034 (5), CsPbBr0.04Cl2.96 (6) с разным соотношением галогенов, полученные при комнатной температуре, (б) приведена зависимость гипсохромного сдвига спектра ФЛ от продолжительности обработки пленки CsPbBr3 парами HCl при 120°С. Кривая представляет собой биэкспоненциальную аппроксимацию экспериментальных данных (кружки).

Пример конкретной реализации способа.

Для повышения гидрофильности подложек, например, стеклянных, их помещали на 20 минут в горячий (110°С) раствор пираньи, который представлял собой смесь серной кислоты (H2SO4, 6 мл) и перекиси водорода (Н2О2, 2 мл). Затем подложки промывали в деионизированной воде, продували воздушным пистолетом и помещали в озонатор на 5 минут. Раствор перовскита CsPbBr3 получали в перчаточном боксе в атмосфере азота. Для получения раствора перовскита 0,110 г бромида свинца (II) (PbBr2, 99,999%, Alfa Aesar) и 0,07 г бромида цезия (CsBr, 99,999%, Sigma-Aldrich) растворяли в 1 мл диметилсульфоксида (ДМСО, безводный, 99,8%, Alfa Aesar). После полного растворения CsBr и бромида свинца PbBr2 в ДМСО раствор фильтровали с использованием фильтра (0,45 мкм) с мембраной из ПТФЭ. Полученный раствор перовскита (30 мкл) наносили на стеклянные подложки методом центрифугирования при скорости вращения 2500 об/мин в течение 5 минут. Полученные образцы помещали на нагретую до 50°С плитку и затем температуру постепенно поднимали до 150°C с целью испарения ДМСО. Сам процесс химического анионного обмена происходил в воздушной атмосфере. Для этого основание стеклянной чашки Петри (100×20 мм), полученный образец тонкой пленки состава CsPbBr3, нанесенной на первую стеклянную подложку и вторую чистую стеклянную подложку, помещенные в чашку Петри, нагревали в течение 3 мин при 120°С. Затем на вторую стеклянную подложку наносили с помощью дозатора 10 мкл соляной кислоты (HCl, 40%, Vekton) и обе подложки накрывали нагретым до 120°С бюксом (40×25 мм, 25 мл). Процесс анионного обмена происходил в течение фиксированного времени в зависимости от необходимого соотношения галогенов Br и Cl (3 с -CsPbBr2.61Cl0.39, 8 с - CsPbBr2.102Cl0.898, 13 с - CsPbBr1.501Cl1.499, 25 с - CsPbBr0.966Cl2.034, и 180 с - CsPbBr0.04Cl2.96). По завершению процесса, первую подложку с перовскитной пленкой нового состава помещали на плитку и отжигали в течение 2 мин, поднимая температуру от 120 до 200°С. В результате была получена тонкая пленка состава CsPbBr3, нанесенная на стеклянную подложку, с характерным пиком ФЛ - 521 нм (поглощения 515 нм). Пленка состава CsPbBr2.61Cl0.39 характеризовалась пиком ФЛ - 505 нм и поглощения - 499,4 нм. При выдерживании первоначального образца перовскитной пленки в течение 8 секунд был получен образец тонкой пленки состава CsPbBr2.102Cl0.898 пик ФЛ которой - 485 нм (поглощения 480 нм). Также был получен образец пленки состава CsPbBr1.501Cl1.499 с пиком ФЛ - 465 нм (поглощения 460,7 нм), CsPbBr0.966Cl2.034 с пиком ФЛ - 445 нм (поглощения 441,5 нм и образец состава CsPbBr0.04Cl2.96 для получения которого требуется 180 с, пик ФЛ которого составляет 411 нм (поглощения 408 нм).

Преимуществами данного способа являются: использование малой концентрации кислоты, необходимой для реакции, и обеспечение замкнутой среды, что делает данный способ безопасным, возможность получения любых соотношений галогенов за короткий период времени, получение перовскитных пленок с высококачественной морфологией.

1. Способ изготовления неорганических хлорсодержащих перовскитных тонких пленок путем анионного обмена в паровой фазе, заключающийся в помещении предварительно полученного образца перовскитной тонкой пленки состава CsPbBr3, нанесенной на подложку, в среду паров соляной кислоты, отличающийся тем, что предварительно полученный образец перовскитной тонкой пленки, нанесенный на подложку, помещают рядом со второй чистой подложкой в сосуд с плоским дном, нагревают до 120°С в течение не менее 3 мин, затем на чистую подложку наносят соляную кислоту HCl и обе подожки накрывают нагретой до 120°С крышкой, поперечный размер которой меньше поперечного размера сосуда с плоским дном, при этом количество нанесенной кислоты и размер крышки подбирается в примерном объемном соотношении 1:2500, а время протекания реакции анионного обмена выбирают в зависимости от требуемого соотношения брома Br и хлора Cl в изготовляемой пленке с учетом того, что время полного замещения галогенов Br на Cl не превышает 3 мин, после чего полученный образец нагревают, поднимая температуру от 120 до 200°С в течение 2 мин.

2. Способ изготовления неорганических хлорсодержащих перовскитных тонких пленок по п. 1, отличающийся тем, что время протекания реакции анионного обмена для требуемого соотношения брома и хлора в изготовляемой пленке выбирают с учетом соответствия зависимости, аппроксимированной по следующим точкам: 3 с - CsPbBr2.61Cl0.39, 8 с - CsPbBr2.102Cl0.898, 13 с - CsPbBr1.501Cl1.499, 25 с - CsPbBr0.966Cl2.034, и 180 с - CsPbBr0.04Cl2.96.



 

Похожие патенты:
Изобретение относится к технологии получения менисков, оболочек и заготовок линз оптических систем современных оптических, оптоэлектронных и лазерных приборов, работающих в ультрафиолетовой, видимой и ИК-областях спектров, и может быть использовано для получения выпукло-вогнутых линз из кристаллов фтористого лития.

Изобретение относится к области материаловедения, а именно к технологии получения тонких пленок или контактных микропечатных планарных структур галогенидных полупроводников состава АВХ3, в том числе с органическими катионами, которые могут быть использованы в качестве светопоглощающего слоя в твердотельных, в том числе тонкопленочных, гибких или тандемных солнечных элементах или для создания светоизлучающих устройств.

Изобретение относится к области синтеза наноструктур на основе перовскитов, которые могут быть использованы в качестве материалов для нанофотоники для создания Фабри-Перо наносенсоров и фотонных интегральных схем.

Изобретение относится к использованию ударных волн для проведения химических реакций или для модификации кристаллической структуры веществ, в частности к способу формирования пустот в ионных кристаллах KBr.

Изобретение относится к области химической технологии и может быть использовано для получения особо чистых галогенидных солей методом зонной перекристаллизации, применяемых, в частности, при пирохимической переработке ядерного топлива, химическом и электрохимическом синтезе элементов и соединений в получаемых солях.

Изобретение относится к материалам для поляризационных оптических устройств. Дихроичный материал представляет собой фторидоборат с «антицеолитной» структурой с общей формулой ; при х=0, у=(0÷0.1) в виде каркаса [Ва12(ВО3)6]6+, сложенного чередующимися слоями (АВАВ) вдоль направления кристаллографической оси Z, содержащего изменяемые количества и тип гостевых анионных групп, образующийся в четверной системе Ва6(ВО3)4-Ва6(ВО3)3.6F1.2 - NaBa12(BO3)7F4- LiBa12(BO3)7F4, при этом А-слои «антицеолитной» структуры включают гостевые (ВО3)3- и (F2)2- группы, В-слои включают гостевые анионные группы (ВО3)3 и являются оптически-активными, в которых происходит статическое и динамическое разупорядочение гостевых анионных групп.

Изобретение относится к области получения кристаллов на основе твердых растворов бромида серебра (AgBr) и иодида одновалентного таллия (TlI). Кристаллы прозрачны от видимой до дальней инфракрасной (ИК) области спектра (0,5-67,0 мкм), пластичны, не обладают эффектом спайности, поэтому из них изготавливают методом горячего прессования оптические изделия (линзы, окна, пленки) и получают методом экструзии микроструктурированные световоды для среднего ИК-диапазона (2,0-25,0 мкм).

Изобретение относится к технологии выращивания кристаллов многокомпонентных фторидов со структурой флюорита в системах MF2-CeF3, которые широко используются в оптике, фотонике, физике высоких энергий.

Изобретение относится к области техники, связанной с выращиванием кристаллов из расплавов методом горизонтально направленной кристаллизации (ГНК), которые широко используются в качестве сцинтилляторов для детекторов ионизирующего излучения, лазерных кристаллов и элементов оптических приборов, работающих в широкой спектральной области от ультрафиолетового до среднего инфракрасного диапазона длин волн.

Изобретение относится к монокристаллическим оптическим неорганическим материалам, которые могут использоваться в оптической технике. Оптический материал представляет собой монокристаллический моноиодид индия InI ромбической сингонии с областью спектрального пропускания до 51 мкм.

Изобретение может быть использовано в производстве источников энергии для электронных устройств. Способ получения сложного гидроксида никеля-кобальта включает первую кристаллизацию при подаче раствора, содержащего никель, кобальт и марганец, а также реагента, образующего комплексный ион, и раствора основания, по отдельности и одновременно, в один реакционный сосуд.

Изобретение относится к технологии получения сложных оксидов, имеющих слоистую структуру Руддлесдена-Поппера (РП) и относящихся к гомологической фазе АО⋅(АВО3)2. Способ получения сложного оксида манганита BaLn2Mn2O7+δ, где Ln выбран из группы Nd, Pr, Gd, включает подготовку шихты, содержащей оксид марганца, оксид редкоземельного металла и оксид бария, смешивание исходных компонентов, прессование полученной смеси в таблетки и последующий двухстадийный отжиг в газовой среде, при этом указанные компоненты взяты соответственно атомному соотношению Ba:Ln:Mn=1,0:1,9:2,0, а отжиг проводят в кислородсодержащей газовой среде при поддержании заданного значения давления кислорода в диапазоне Ро2=10-5,0÷10-5,2 атм, причем на первой стадии нагрев осуществляют до температуры 1173К с выдержкой в течение 24 часов, а на второй стадии - до температуры 1573К с выдержкой в течение 48 часов.

Изобретение может быть использовано в химической промышленности. Способ получения синтетического флюорита CaF2 включает приготовление раствора NH4F путем основного гидролиза фторкремниевой кислоты H2SiF6 водным раствором NH3.

Изобретение относится к химической технологии получения волокнистого кремния и может найти применение для использования в порошковой металлургии, литий-ионных источниках тока, преобразователях солнечной энергии, полупроводниковых приборах, таких как термоэлектрические преобразователи, тензодатчики и переключатели.
Изобретение относится к нанотехнологии и может быть использовано при изготовлении электронных приборов, а также для инжекции зарядов в объём конденсированных сред при криогенных температурах.

Изобретение может быть использовано в позитронно-эмиссионных томографах, в геофизических исследованиях скважин, а также в системах безопасности. Сцинтиллятор имеет длину волны излучения больше 200 нм, максимум излучения при 320-460 нм и химическую формулу AD(BO3)X2:E, где А - Ва, Са, Sr, La или их сочетание, D - Al, Ga, Mg или их сочетание, X - F, Cl или их сочетание, Е - Се или сочетание Се и Li.

Изобретение может быть использовано в топливных элементах, литий-ионных батареях, суперконденсаторах, электросорбционных установках очистных сооружений. Углеводород из ряда (CnH2n+n), например метан, используемый в качестве источника углерода, подают в термическую плазму предварительно смешанным с азотом в массовых соотношениях от 1:10 до 1:5 и обрабатывают в термической плазме, формируемой в плазмотроне, при пониженном давлении 300-700 Торр.

Изобретение может быть использовано в аддитивных технологиях для формирования импланта костной ткани. Способ получения сферических гранул гидроксилапатита с регулируемым гранулометрическим составом включает приготовление смеси, содержащей 11-15 мас.% нитрата кальция, 5-9 мас.% гидрофосфата аммония и воду – остальное.

Изобретение относится к получению соединений с углеродом и может быть использовано в водородной энергетике. Устройство для получения порошка, содержащего карбид молибдена, содержит камеру 1 из диэлектрического материала с крышкой 2 вверху, внутри которой горизонтально и соосно размещены цилиндрические графитовые анод 9 и катод 5.

Изобретение может быть использовано при получении подложки для катализаторов, используемых в процессе каталитического риформинга. Сфероидальные частицы оксида алюминия имеют удельную поверхность по БЭТ, составляющую 150-300 м2/г, средний диаметр частиц 1,2-3 мм, разброс диаметров частиц, выраженный через стандартное отклонение, не превышающее 0,1.

Изобретение относится к области синтеза наноструктур на основе перовскитов, которые могут быть использованы в качестве материалов для нанофотоники для создания Фабри-Перо наносенсоров и фотонных интегральных схем.

Изобретение относится к области синтеза неорганических материалов, в частности к получению перовскитных тонких пленок, которые могут применяться в качестве активного слоя для светодиодов и солнечных элементов. Способ изготовления неорганических хлорсодержащих перовскитных тонких пленок методом химического анионного обмена в паровой фазе заключается в том, что предварительно полученный образец перовскитной тонкой пленки состава CsPbBr3, нанесенной на подложку, помещают рядом со второй чистой подложкой в сосуд с плоским дном, нагревают до 120°С в течение не менее 3 мин. Затем на чистую подложку наносят соляную кислоту и обе подожки накрывают нагретой до 120°С крышкой, поперечный размер которой меньше поперечного размера сосуда с плоским дном, при этом количество нанесенной кислоты и размер крышки подбирается в примерном объемном соотношении 1:2500, а время протекании реакции анионного обмена выбирают в зависимости от требуемого соотношения брома и хлора в изготовляемой пленке состава CsPbBr3-xClx с учетом того, что время полного замещения галогенов Br на Cl не превышает 3 мин, после чего полученный образец нагревают, поднимая температуру от 120°С до 200°С в течение 2 мин. Технический результат состоит в возможности проведения процедуры в замкнутой среде, которая делает процесс безопасным, в получении любых соотношений галогенов за короткий период времени и сохранении высококачественной морфологии перовскитных пленок. 1 з.п. ф-лы, 1 ил., 1 пр.

Наверх